期刊文献+

基于Spark的并行ISOMAP算法 被引量:2

Parallel ISOMAP algorithm based on Spark
下载PDF
导出
摘要 为了实现大数据环境下非线性高维数据的降维,提出了基于Spark的并行ISOMAP算法.在该方法中,为了快速求解大规模矩阵的特征值和特征向量,设计并实现了基于Spark的并行块Davidson方法;同时,针对大规模矩阵计算和传输困难的问题,提出了基于RDD分区的行块式矩阵乘法策略,该策略把每个分区中的矩阵行转换成块矩阵,行块式矩阵可不受map算子对RDD逐条计算的限制,并可以利用Spark中的线性代数库参与矩阵级别的运算.实验结果表明,行块式矩阵乘法策略有效提高了矩阵运算的效率,并行块Davidson方法能够快速求解大规模矩阵特征值和特征向量,有效提高了并行ISOMAP算法的性能,表明并行ISOMAP算法可以适应大数据环境下的降维处理. To reduce the dimension of the nonlinear high-dimensional data in the big data environment,a parallel ISOMAP algorithm based on Spark is proposed,where a Spark-based parallel block Davidson method is designed and implemented to quickly solve eigenvalues and eigenvectors of the large scale matrices.Simultaneously,a row-block matrix multiplication strategy based on RDD partition is proposed for the difficulty of computation and transmission of the large scale matrices,which converts the matrix rows in each partition into block matrices.The row-block matrices are not restricted by the map operator to RDD calculation one by one,and can treat operations at the matrix level by using linear algebraic Library in Spark.The experimental results show that the row-block matrix multiplication strategy effectively improves the efficiency of matrix operations;the parallel block Davidson method can quickly solve the eigenvalues and eigenvectors of the large scale matrices and effectively improve the performance of parallel ISOMAP algorithm;and the parallel ISOMAP algorithm can adapt to dimensionality reduction in the big data environment.
作者 石陆魁 郭林林 房子哲 张军 SHI Lukui;GUO Linlin;FANG Zizhe;ZHANG Jun(School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China;Hebei Province Bigdata Computation Key Laboratory, Tianjin 300401, China)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第10期842-850,共9页 JUSTC
基金 河北省自然科学基金(F2017202145)资助。
关键词 ISOMAP 行块式矩阵 块Davidson方法 SPARK ISOMAP row-block matrix block Davidson method Spark
  • 相关文献

参考文献2

二级参考文献16

  • 1程建钢,李明瑞,黄文彬.有限元分析的并行计算方法[J].力学与实践,1995,17(4):6-12. 被引量:9
  • 2将尔雄.对称矩阵计算[M].上海:上海科学技术出版社,1984.
  • 3Davidson E R. The iterative calculation of a few lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices[J]. Journal of Computational Physics, 1975, 17(1): 87-94.
  • 4Sleijpen G L G, Van der Vorst H A. A JacobiDavidson iteration method for linear eigenvalue problem[J]. SIAM J Matrix Anal Appl, 1996, 17(2): 401-425.
  • 5Underwood R. An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems[D]. Stanford: Computer Science Department, Stanford University, 1975.
  • 6Crouzeix M, Philippe B, Sadkane M. The Davidson method[J]. SIAM J Sci Comput, 1994, 15(1):62-76.
  • 7Sadkane M, Sidje R B. Implementation of a variable block Davidson method with deflation for solving large sparse eigenproblems [J]. Numerical Algorithms, 1999, 20(2):217-240.
  • 8Balle S, Cullum J. A parallel algorithm for computing eigenvalues of very large real symmetric matrices on message passing architectures [J]. Applied Numerical Mathematics, 1999, 30 (2) : 341-365.
  • 9Nool M, Van der Ploeg A. A parallel Jacobi-Davidson-type method for solving large generalized elgenvalue problems in magnetohydrodynamics[J]. SIAM Journal on Scientific Computing, 2000, 22 (1) : 95-112.
  • 10Olsen J, Jorgensen P, Simons J. Passing the onebillion limit in full configuration-interaction (FCI) calculations [J]. Chemical Physics Letters, 1990, 169(6): 463-472.

共引文献3

同被引文献13

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部