期刊文献+

基于通道注意力机制的RGB-D图像语义分割网络 被引量:5

RGB-D semantic segmentation using channel attention mechanism
下载PDF
导出
摘要 针对RGB-D图像的语义分割问题,提出了一种结合通道注意力机制的RefineNet网络。考虑到网络特征图中各个通道重要性的不同,将通道注意力机制分别引入基本RefineNet的编码器和解码器模块,以增强网络对重要特征的学习和关注;同时,使用focal loss函数代替传统的交叉熵损失函数,以处理多类语义分割任务中的类别数量不平衡和难分样本问题。在SUNRGBD和NYUv2数据集上的实验结果表明,相比于最新的主流语义分割网络如Depth-aware、RDFNet和Refinenet,本文网络在保持相近网络参数量和计算量的同时,有效地提高了分割精度,其mIOU分别达到45.7%和49.4%。 This paper present an improved RefineNet network with channel attention mechanism for RGB-D image segmentation.In the proposed semantic segmentation network,considering the different importance of each channel in feature graphs,channel attention mechanism is introduced into the basic RefineNet encoder and decoder,which enforces the network to focus on important features.Moreover,the focal loss function is used to replace the traditional cross-entropy loss function to deal with the imbalance of the category number and the hard samples in multi-class semantic segmentation tasks.The experimental results on SUNRGBD and NYUv2 datasets show,compared to the latest segmentation networks such as Depth-aware,RDFNet and Refinenet,the proposed network can effectively improve the segmentation accuracy while maintaining similar network parameters and computational load,and its mIOU on the two datasets are 45.7%and 49.4%m,respectively.
作者 吴子涵 周大可 杨欣 WU Zi-han;ZHOU Da-ke;YANG Xin(College of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Jiangsu Key Laboratory of Internet of Things and Control Technologies,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)
出处 《电子设计工程》 2020年第13期147-153,159,共8页 Electronic Design Engineering
关键词 深度学习 语义分割 注意力机制 损失函数 deep learning semantic segmentation attention mechanism loss function
  • 相关文献

参考文献2

二级参考文献15

  • 1Krhenbiihl P, Koltun V. Efficient inference in fully con- nected CRFs with gaussian edge potentials [ C]//25th Annual Conference on Neural Information Processing Systems. Granada, Span, 2011:109 - 117.
  • 2Ren X, Bo L, Fox D. RGB-(D) scene labeling: Fea- tures and algorithras [ C ]//IEEE Conference on Com- puter Vision and Pattern Recognition. Providence, RI, USA, 2012:2759 - 2766.
  • 3Silberman N, Hoiem D, Kohli P, et al. Indoor segmen- tation and support inference from RGBD images [ C ]// 12th European Conference on Computer Vision. Firen- ze, Italy, 2012 : 746 - 760. DOI: 10. 1007/978-3-642- 33715-4-54.
  • 4Silberman N, Fergus R. Indoor scene segmentation u- sing a structured light sensor [ C ]//IEEE International Conference on Computer Vision Workshops. Barcelona, Spain, 2011:601 - 608.
  • 5Stasse O, Dupitier S, Yokoi K. 3D object recognition using spin-images for a humanoid stereoscopic vision system [ C ]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006 : 2955 - 2960. DOI: 10.1109/iros. 2006. 282151.
  • 6Lowe D G. Distinctive image features from scales-in- variant keypoints [ J ]. International Journal of Comput- er Vision, 2004, 60(2) :91 -110. DOI:10. 1023/b:vi- si. 0000029664. 99615.94.
  • 7Couprie C, Farabet C, Najman L, et al. Indoor seman- tic segmentation using depth information [ C ]//Interna- tional Conference on Learning Representation. Scotts- dale, AZ, USA, 2013:1-8.
  • 8Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods [ J ]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2012, 34(11):2274-2282. DOI:10. 1109/ tpami. 2012. 120.
  • 9Yan Q, Xu L, Shi J, et al. Hierarchical saliency detec- tion [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA, 2013 : 1155 - 1162.
  • 10Rusu R B, Cousins S. 3D is here: Point cloud library [ C ]//Proceedings IEEE International Conference on Ro- botics and Automation. Shanghai, China, 2011 : 1 - 4.

共引文献7

同被引文献29

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部