摘要
考虑回归模型yt=xTtβ+et,t=1,2,…,n,其中误差et=atet-1+bt+ηt是平稳线性AR过程。讨论了该模型未知参数的Huber-Dutter估计的渐近性质,在合理的条件下,利用泰勒展开方法证明了估计量的弱收敛速度可以达到n-1[]2,同时还证明了误差过程et二阶矩的有界性,为更深入研究该模型大样本性质提供了基础。
Consider the following regression model yt=xTtβ+et(t=1,2,…,n)where the error et=atet-1+bt+ηt is a stationary AR process.In this paper the asymptotic behavior of Huber-Dutter estimators for unknown parameters in the above model is investigated.Under some regular conditions by the method of Taylor expansion the estimators weak converge to the true values with rate n-1[]2 is proved.And the boundedness of second moment of the error process is also proved.Then some foundational works have been finished for deeper study of large sample property in the above model.
作者
徐立峰
XU Li-feng(College of Mathematics and Statistics, Hubei Normal University, Huangshi 435002,China)
出处
《湖北师范大学学报(自然科学版)》
2020年第2期6-9,共4页
Journal of Hubei Normal University:Natural Science
基金
湖北省教育厅资助科研项目(D20172501,B2018148)。