期刊文献+

基于纳米腔表面等离子体单向激发的超分辨亚波长光刻

Ultra-deep Subwavelength Photolithography Based on Unidirectional Excitation of Surface Plasmons in a Nanocavity
下载PDF
导出
摘要 采用数值模拟方法,提出了一种能增强超分辨亚波长光刻的表面等离子体纳米共振腔,该腔采用间隙表面等离子体(gap surface plasmons,GSPs)单向激发.该空腔由光刻胶分隔的两个金属膜复合而成.论文研究了空腔深度和宽度对GSPs的相位调制影响规律以及透射光增强效应影响规律,得到了与非腔结构相比拟的曝光强度,分辨率远小于工作波长436 nm,仅为40 nm. With the numerical simulation method,a surface plasmon(SP)resonant nanocavity capable of enhancing ultra-deep subwavelength photolithography is proposed based on unidirectional excitation of gap surface plasmons(GSPs)to counter transmission in the cavity.The cavity is composited of two metallic films separated by a photoresist layer.The influence of transmission enhancement and the phase modulation of GSPs caused by the depth and width of cavity is confirmed in this paper.Optimizing these parameters,an order-enhanced expose intensity of photolithographic patterns than that in the structure of noncavity is obtained with resolution of 40nm that is far less than the working wavelength of 436nm.
作者 白彩艳 李旭峰 BAI Cai-yan;LI Xu-feng(School of Mathematics,Jinzhong University,Jinzhong Shanxi,030619,China;School of Applied Science,Taiyuan University of Science and Technology,Taiyuan Shanxi,030024,China)
出处 《晋中学院学报》 2020年第3期21-25,共5页 Journal of Jinzhong University
基金 山西省自然科学基金“基于导模共振的亚波长光栅异常衍射特性分析及传感应用研究”(201701D121007) 山西省自然科学基金“金属光子晶体薄膜设计及可见光调控机理的研究”(201701D121050) 晋中学院博士基金启动项目“表面等离子激元辅助TCO超表面热发射/吸收机理研究”(jzxybsjjxm2019039) 晋中学院博士基金启动项目“超冷原子气体中涡旋偶极子动力学的研究”(jzxybsjjxm2019014).
关键词 光刻技术 表面等离子体 时域有限元差分法 photolithography surface plasmons FDT
  • 相关文献

参考文献4

二级参考文献120

  • 1刘江涛,周云松,王福合,顾本源.光子晶体反常色散超窄带滤波理论[J].物理学报,2004,53(10):3336-3340. 被引量:6
  • 2顾培夫,陈海星,秦小芸,刘旭.基于薄膜光子晶体超晶格理论的偏振带通滤波器[J].物理学报,2005,54(2):773-776. 被引量:20
  • 3许兴胜,熊志刚,孙增辉,杜伟,鲁琳,陈弘达,金爱子,张道中.半导体量子阱材料微加工光子晶体的光学特性[J].物理学报,2006,55(3):1248-1252. 被引量:4
  • 4International Technology Roadmap Committee.The international technology roadmap for semiconductors, 2007 Ed. 2009.
  • 5Sun H B, Tanaka T, Kawata S. Three-dimensional focal spots related to two-photon excitation. Appl Phys Lett, 2002, 80:3673-3675.
  • 6Menon R, Tsai H, Thomas Ⅲ S W. Far-field generation of localized light fields using absorbance modulation. Phys Rev Lett, 2007, 98:043905.
  • 7Brimhall N, Andrew T L, Manthena R V, et al. Breaking the far-field diffraction limit in optical nanopatterning via repeated photochemical and electrochemical transitions in photochromic molecules. Phys Rev Lett, 2011, 107:205501.
  • 8Andrew T L, Tsai H, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science, 2009, 324:917-921.
  • 9Boto A N, Kok P, Abrams D S, et al. Quantum interferometric optical lithography:Exploiting entanglement to beat the diffraction limit. Phys Rev Lett, 2000, 85:2733-2736.
  • 10Guo L J. Recent progress in nanoimprint technology and its applications. J Phys D Appl Phys, 2004, 37:R123-R141.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部