摘要
针对传统用户意图识别主要使用基于模板匹配或人工特征集合方法导致成本高、扩展性低的问题,提出了一种基于BERT词向量和BiGRU-Attention的混合神经网络意图识别模型。首先使用BERT预训练的词向量作为输入,通过BiGRU对问句进行特征提取,再引入Attention机制提取对句子含义有重要影响力的词的信息以及分配相应的权重,获得融合了词级权重的句子向量,并输入到softmax分类器,实现意图分类。爬取语料实验结果表明,BERT-BiGRU-Attention方法性能均优于传统的模板匹配、SVM和目前效果较好的CNN-LSTM深度学习组合模型。提出的新方法能有效提升意图识别模型的性能,提高在线健康信息服务质量、为在线健康社区问答系统提供技术支撑。
Aiming at the problem of high cost and low expansibility of traditional user intention recognition,which mainly uses template matching or artificial feature set,a hybrid neural network intention recognition model based on BERT word embedding and BiGRU-Attention was proposed.First,the word embedding pre-trained by BERT was used as the input,and the features of the interrogative sentences were extracted by BiGRU.Then,the attention mechanism was introduced to extract the information of words that have important influence on the meaning of sentences and allocate the corresponding weights,so as to obtain the sentence embedding that integrates the word-level weights and input it into the softmax classifier to realize intention classification.According to the experiment on the crawling corpus,it shows that the performance of BERT-BiGRU-Attention method is better than that of traditional template matching,SVM and lately popular CNN-LSTM deep learning combined model.The proposed method can effectively improve the performance of intention recognition model and the quality of online health information service,which provide technical support for the online health community question answering system.
作者
迟海洋
严馨
周枫
徐广义
张磊
CHI Haiyang;YAN Xin;ZHOU Feng;XU Guangyi;ZHANG Lei(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming,Yunnan 650500,China;Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming,Yunnan 650500,China;Yunnan Nantian Electronic Information Industry Company Limited,Kunming,Yunnan 650040,China)
出处
《河北科技大学学报》
CAS
2020年第3期225-232,共8页
Journal of Hebei University of Science and Technology
基金
国家自然科学基金(61562049,61462055)。
关键词
自然语言处理
意图识别
在线健康社区
BERT词向量
BiGRU
Attention机制
natural language processing
intention identification
online health communities
BERT word embedding
bidirectional gated recurrent unit(BiGRU)
Attention mechanism