期刊文献+

基于信息融合的风电机组老化评估研究 被引量:1

Research on aging evaluation of wind turbines based on information fusion
下载PDF
导出
摘要 针对老化导致的风电机性能退化问题提出了一种基于信息融合的风电机组整体老化评估方法。选取SCADA数据中的输出功率、机舱振动、主轴承温度、发电机后轴承温度、齿轮箱转速和机舱温度作为老化评估标准,通过神经网络求取各评估标准的权重,将评估标准的信息进行融合,建立整体老化评估模型,并验证其可靠性。研究表明,利用信息融合的方法建立风电机组的老化评估模型简单有效,可靠性高,为后续风电机组老化程度的研究提供了新的思路。 An overall aging evaluation method for wind turbines based on information fusion is proposed for the degradation of wind turbine performance caused by aging.The output power,cabin vibration,main bearing temperature,generator rear bearing temperature,gearbox speed and cabin temperature are selected in SCADA data as the aging evaluation criteria.The weights of each evaluation criterion are obtained through the neural network.The information of evaluation criteria is fused to establish an overall aging evaluation model and verify its reliability.The study shows information fusion is an effective and simple way to establish the aging evaluation model of wind turbines in a high reliability.At the same time it provides a new idea for the study of the aging degree of wind turbines.
作者 苏连成 邢美玲 SU Liancheng;XING Meiling(School of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《燕山大学学报》 CAS 北大核心 2020年第4期379-387,共9页 Journal of Yanshan University
基金 河北省自然科学基金资助项目(F2015203412)。
关键词 风电机组老化评估 神经网络 信息融合 SCADA wind turbine aging assessment neural network information fusion SCADA
  • 相关文献

参考文献6

二级参考文献53

  • 1张照煌,丁显,刘曼,曾菊瑛.基于小波变换的风电机组传动系统故障诊断与分析[J].应用基础与工程科学学报,2011,19(S1):210-218. 被引量:16
  • 2王爱民.神经网络应用于模糊综合评价的研究[J].系统工程理论与实践,1995,15(10):37-42. 被引量:48
  • 3唐丽艳,李卫东,景瑜.应用人工神经网络进行企业综合经济效益评估[J].管理工程学报,1996,10(2):89-94. 被引量:4
  • 4唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 5W Yang,P J Tavner,M R Wilkinson. Condition Monitoring and Fault Diagnosis of a Wind Turbine Synchronous Generator Grive Grain[J].IET Renewable Power Generation (S1752-1416),2009,(01):1-11.
  • 6Alan Jiang;Yinghua Zhao;Liwei Zhang.Experimental Study of Acoustic Emission Characteristics of Underwater Concrete Structures[A]{H}南京,2008252-257.
  • 7Zaher A,McArther S D J,Infield D G. Online Wind Turbine Tautly Detection Through Automated SCADA Data Analysis[J].Wind Energy (S1095-4244),2009,(06):574-593.
  • 8Hameed Z,Hong Y S,Cho Y M. Condition Monitoring and Fault Detection of Wind Turbines and Related Algorithms:a Review[J].Renewable and Sustainable Energy Reviews (S1364-0321),2009,(01):1-39.
  • 9Amirat Y,Benbouzid M,Al-Ahmar E. A Brief Status on Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems[J].Renewable and Sustainable Energy Reviews (S1364-0321),2009,(09):2629-2636.
  • 10Lu Bin,Li Yaoyu,Wu Xin. A Review of Recent Advances in Wind Turbine Condition Monitoring and Fault Diagnosis[A].USA:IEEE,2009.1-7.

共引文献223

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部