期刊文献+

一种基于异构串联卷积神经网络的铁路异物检测模型 被引量:5

Railway Foreign Body Detection Model Based on Heterogeneous Series Convolutional Neural Network
下载PDF
导出
摘要 针对目前铁路异物侵限报警系统中存在的误报率较高,物体分类能力有限的问题,本文设计了一套非接触式异物侵限报警系统.提出一种采用异构串联卷积核和加入归一池化层的卷积神经网络模型用于系统图像识别,通过对比试验和系统测试,该模型在小样本训练情况下具有较好的泛化能力,能有效保障系统的稳定性与精确度. A set of non-contact foreign body intrusion alarm system is presented to solve high false positive rate and limited object classification capabilities in current railway foreign body intrusion alarm system.This paper proposed a convolutional neural network model with heterogeneous series convolution kernel and normalized pool layer for image recognition.Through comparison experiments and system tests,the model has better generalization ability in the case of small sample training,which can effectively guarantee the stability and accuracy of the system.
作者 王建鹏 WANG Jianpeng(Shanxi Information Industry Technology Research Institute Co., Ltd, Taiyuan 030012, China)
出处 《测试技术学报》 2020年第4期344-348,共5页 Journal of Test and Measurement Technology
关键词 异物入侵监测 异构串联卷积核 小样本 归一池化 foreign body intrusion monitoring heterogeneous series convolution kernel small sample normalized pooling
  • 相关文献

参考文献2

二级参考文献11

共引文献16

同被引文献48

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部