期刊文献+

基于模糊自抗扰的精密直线电机运动控制 被引量:5

Precise Linear Motor Motion Control Based on Fuzzy ADRC
下载PDF
导出
摘要 针对精密直线电机运动平台模型参数不确定以及直线电机结构特性带来的端部效应和定位力波动等非线性因素引起的系统动态响应性能下降问题,分析了直线电机运动平台数学模型,设计了一种模糊自抗扰控制器(ADRC)。通过Simulink建立伺服运动平台和控制器模型,并进行仿真优化。仿真结果表明,与传统PID控制器和经典ADRC相比,设计的模糊ADRC的跟随误差明显下降,抵抗系统扰动能力明显上升,说明了模糊ADRC具有更高精度的动态跟随能力及更好的抗干扰性、鲁棒性和自适应能力。 In the precise linear motor motion platform systems,the nonlinear factors such as model parameter uncertainties and the end effect and positioning force fluctuation caused by the motor structural characteristics may lead to the dynamic response degradation.Aiming at this problem,the mathematical model of the linear motor motion platform is analyzed.A fuzzy active disturbance rejection controller(ADRC)is designed,and models of the servo motion platform and the controller are established using Simulink.Simulation is performed to further optimize the control parameters.The simulation results show that,compared with the traditional PID controller and the classical ADRC,the following error decreases and the anti-interference capability increases significantly,indicating that the fuzzy ADRC has more precise dynamic following ability and better anti-interference capability,robustness and adaptive ability.
作者 隋延飞 李旭 李星占 刘海波 王永青 SUI Yanfei;LI Xu;LI Xingzhan;LIU Haibo;WANG Yongqing(Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education,Dalian University of Technology,Dalian 116023,China;Institute of Mechanical Manufacturing Technology of China Academy of Engineering Physics,Chengdu 610200,China)
出处 《电机与控制应用》 2020年第6期6-11,共6页 Electric machines & control application
基金 中央高校基本科研业务费项目(DUT2019TA01) 国防基础科研核科学挑战专题项目(TZ2018006-0101-03) 中国博士后科学基金(2019M651114)。
关键词 自抗扰控制 模糊控制 直线电机 运动控制 active disturbance rejection control(ADRC) fuzzy control linear motor motion control
  • 相关文献

参考文献2

二级参考文献14

  • 1Cheng Guoyang,Jin Wenguang.Parameterized design of nonlinear feedback controllers for servo positioning systems[J].Journal of Systems Engineering and Electronics,2006,17(3):593-599. 被引量:1
  • 2韩京清.自抗扰控制技术[M].北京:国防工业出版社.2008.
  • 3Xu Z, Chang S. Improved moving coil electric machine for in- ternal combustion linear generator[J]. IEEE Transactions on Energy Conversion,2010,25(2) :281 -286.
  • 4Ji J,Yan S,Zhao W,et al. Minimization of cogging force in a no- vel linear permanent-magnet motor for artificial hearts[J]. IEEE Transactions on Magnetics,2013,49(7) :3901 - 3904.
  • 5Cao R, Low K-S. A repetitive model predictive control ap-proach for precision tracking of a linear motion system [ J ]. IEEE Trans Ind Electron,2009,56(6) :1955 -1962.
  • 6Xu L,Yao B. Output feedback adaptive robust precision motion control of linear motors[J]. Automatica,2001,37(7) :1029 - l039.
  • 7Han J. From PID to active disturbance rejection control[ J]. IEEE Trans Ind Electron,2009,56(3) :900 - 906.
  • 8Lin C-J, Yau H-T, Tian Y-C. Identification and compensa- tion of nonlinear friction characteristics and precision control for a linear motor stage [ J ]. IEEE/ASME Transactions on Meehatronics,2013,18(4) :1385 - 1396.
  • 9黄学良,周赣,张前.平面电机的海尔贝克型直线电机执行器[J].中国电机工程学报,2009,29(21):80-86. 被引量:16
  • 10林健,汪木兰,李宏胜.基于遗传神经网络的直线伺服系统定位误差补偿[J].组合机床与自动化加工技术,2011(2):86-88. 被引量:10

共引文献3

同被引文献55

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部