期刊文献+

基于BoF模型的多特征融合果蔬图像分类方法 被引量:3

Multi-feature Fusion Fruit and Vegetable Image Classification Based on Bag of Feature Model
下载PDF
导出
摘要 针对传统BoF模型无法有效利用图像颜色及纹理来更好地表述果蔬特征的问题,文中提出了一种在BoF模型中进行多特征融合的果蔬图像分类算法。该算法首先提取并融合图像的颜色矩和SURF特征形成SURFC特征描述子;然后分别对CLBP及SURFC特征进行K-均值聚类以生成特征词典,并使用特征词典对所有特征量化编码;最后使用SVM对编码结果进行训练得到分类器并识别。实验结果表明,BoF模型融合颜色和纹理特征后,在果蔬图像分类效果上明显优于单一特征或者其他特征融合的BoF模型,识别率最高可达到94%,更适合果蔬图像分类。 In view of the problem that traditional BoF model cannot effectively use image color and texture to better express fruit and vegetable characteristics,this paper proposed a multi-feature fusion algorithm for fruit and vegetable image classification in BoF model.Firstly,the algorithm extracted and fused the color moments and SURF features of the images to form SURFC feature descriptors.Secondly,K-means clustering was performed on CLBP and SURFC features to generate a feature dictionary,and all features were quantized by using the feature dictionary.Finally,SVM was used to train the coding result to get the classifier and recognize it.Results of the experiment showed that the BoF model with fused color and texture features was significantly better than the BoF model with single feature or other feature fusion.The recognition rate was up to 94%,which was more suitable for fruit and vegetable image classification.
作者 张泽晨 巨志勇 ZHANG Zechen;JU Zhiyong(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《电子科技》 2020年第7期41-45,56,共6页 Electronic Science and Technology
基金 国家自然科学基金(81101116)。
关键词 BoF模型 SURF 果蔬识别 特征融合 CLBP SVM BoF model SURF fruits and vegetables recognition feature fusion CLBP SVM
  • 相关文献

参考文献10

二级参考文献100

  • 1王孙安,郭子龙.混沌免疫模糊聚类算法在图像边缘检测中的应用[J].西安交通大学学报,2004,38(7):712-716. 被引量:9
  • 2张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 3SEETHALAKSHMI R.,SREERANJANI T.R.,BALACHANDAR T.,Abnikant Singh,Markandey Singh,Ritwaj Ratan,Sarvesh Kumar.Optical Character Recognition for printed Tamil text using Unicode[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(11):1297-1305. 被引量:1
  • 4薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 5毛罕平,胡波,张艳诚,钱丹,陈树人.杂草识别中颜色特征和阈值分割算法的优化[J].农业工程学报,2007,23(9):154-158. 被引量:38
  • 6Lazebnik S, Schmid C, PonceJ. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, II: 2169-2178.
  • 7Boureau Y, Bach F, LeCun Y, et al. Learning Mid-Level Features for Recognition//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 2559-2566.
  • 8Lowe D. Distinctive Image Features from Scale-Invariant Keypoints. InternationalJournal of Computer Vision, 2004, 60(2): 91-110.
  • 9SivicJ, Zisserman A. Video Coogle: A Text Retrieval Approach to Object Matching in Videos//Proc of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003, II: 1470-1477.
  • 10Aharon M, Elad M, Bruckstein A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans on Signal Processing, 2006, 54 ( 11 ) : 4311-4322.

共引文献365

同被引文献33

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部