期刊文献+

基于区域显著性与稳定性的小目标检测方法 被引量:3

Small Target Detection Method Based on Regional Stability and Saliency
下载PDF
导出
摘要 为解决彩色图像小目标检测中目标易丢失与虚警率高的问题,提出了一种基于区域显著性和稳定性标准增强的小目标检测方法(RSSEM)。首先,在区域稳定性特征提取阶段,针对滤波导致的边缘信息缺失问题,填充图像边界并采用多级阈值二值化图像,在聚类准则下二值图像进行区域聚类和二次后验,使本文方法对小目标有较高敏感度。其次,在区域显著性特征提取阶段,利用旋转对称高斯高通滤波对灰度图像进行滤波得到显著性特征图像。最后,融合稳定性特征与显著性特征,并对强噪声滤波后实现小目标检测。在RSS数据集上,与对照组相比,本文方法能显著降低小目标的丢失率和虚警率,比最先进的算法在精确度、召回率、F值上至少提高1%,表明RSSEM的有效性。 To solve the problems of target missing and high false alarm rate in the detection of small targets from color images,we proposed a small target detection method on the basis of regional saliency and stability enhancement metrics(RSSEM).First,aimed at the missing edge information caused by filter,the image boundaries were filled and image binarization was performed by multi-level thresholds at the stage of regional stability feature extraction.The detection of small target was improved as region clustering and secondary posterior were performed on the binary image.Second,the grayscale image was filtered with the rotational symmetric Gaussian high-pass filter to obtain the salient feature image at the stage of regional saliency feature extraction.Finally,the stability features and saliency features were merged,and small targets were detected after filtering strong noise.On the regional saliency and stability dataset,the rates of target missing and false alarm decrease significantly compared with the control group.The proposed method is at least 1%higher in accuracy,recall and F score in comparison with state-of-the-art methods,which indicates the effectiveness of RSSEM.
作者 吴泽俊 赵彤洲 WU Zejun;ZHAO Tongzhou(School of Computer Science&Technology,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《武汉工程大学学报》 CAS 2020年第3期332-337,共6页 Journal of Wuhan Institute of Technology
基金 国家自然科学基金(61573324) 武汉研究院开放性课题(IWHS20192031) 武汉工程大学第八届研究生教育创新基金(CX2018195)。
关键词 小目标检测 显著性特征 稳定性特征 small target detection stability feature saliency feature
  • 相关文献

参考文献7

二级参考文献48

  • 1刘洋,王海晖,向云露,卢培磊.基于改进的Adaboost算法和帧差法的车辆检测方法[J].华中科技大学学报(自然科学版),2013,41(S1):379-382. 被引量:14
  • 2李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报,2006,17(2):216-222. 被引量:112
  • 3杨一鸣,潘嵘,潘嘉林,杨强,李磊.时间序列分类问题的算法比较[J].计算机学报,2007,30(8):1259-1266. 被引量:40
  • 4Georgescu B0 Shimshoni l,Meer P.Mean shift based cluster- ing in high dimensions:a texture classification example[C]// 1EEE International Conference on Computer Vision,2003,2: 456-463.
  • 5Comaniciu D,Meer P.Mean shift:a robust approach toward feature space analysis[J].IEEE Trans on Pattern Anal Mach Intell, 2002,24 (5) : 603-619.
  • 6Collins R.Mean shift blob tracking through scale space[C]// IEEE Conference on Computer Vision and Pattern Recogni- tion, 2003,2 : 234-240.
  • 7Comaniciu D, Ramesh V, Meet P.Kemel-based object tracking[J]. IEEE Trans on Pattern Anal Mach Intell,2003,25(5):564-577.
  • 8Cheng Y.Mean shift, mode seeking, and clustering[J].IEEE Trans on Pattern Anal Mach Intell,1995,17(8):790-799.
  • 9Ning Jifeng, Zhang Lei, Zhang D, et al.Robust mean shift tracking with corrected background-weighted histogram[J]. lET Computer Vision,2010.
  • 10Hart Ju, Ma Kaikuang.Fuzzy color histogram and its use in color image retrieval[J].IEEE Transactions on Image Processing, 2002,11 (8) : 944-952.

共引文献64

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部