期刊文献+

红外线热成像在压水堆核电站二回路阀门壁厚检查中的应用

Application of Infrared Thermography in Valve Wall Thickness Inspection of Secondary Circuit in PWR Nuclear Power Plant
下载PDF
导出
摘要 压水堆核电站的二回路系统功可以将饱和蒸汽的热能转换为机械能,并构成一个完整的热力循环,这样不仅能够保证汽轮机的安全,还能有效提高核电站的整体热效率。但是,在长时间的运行过程中,二回路系统中阀门阀体的敏感部位会受到不同程度的冲蚀,导致局部阀体减薄现象的发生。本文提出了一种红外线热成像技术在核电站二回路阀体壁厚检查上的工艺方法,并通过实验室和现场试验验证了该方法的有效性。结果表明,红外线热成像技术可以作为阀体壁厚检查的一种有效手段,适当的检测工艺可以有效的筛选出阀体可能减薄的区域,可以结合其他检测方法,综合判断减薄趋势。 The secondary circuit of PWR nuclear power plant can convert the heat energy of saturated steam into mechanical energy,and form a complete thermal cycle,which can not only ensure the safety of steam turbine,but also effectively improve the overall thermal efficiency of nuclear power plant.However,in long-term operation,the sensitive parts of valve body in the secondary circuit would be eroded to varying degrees,resulting in local valve body thinning.In this paper,an infrared thermography was proposed for the wall thickness inspection of valve body in the secondary circuit,and its effectiveness is verified by laboratory and field tests.The results show that infrared thermography can be used as an effective method for the wall thickness inspection of valve body,and appropriate detection technology can effectively screen out the possible thinning area of valve body.Combined with other detection methods,the trend of thinning can be estimated comprehensively.
作者 文杰 边春华 李天宇 刘洪群 卢祺 WEN Jie;BIAN Chun-hua;LI Tian-yu;LIU Hong-qun;LU Qi(CNNC Nuclear Power Operations Management Co.,Ltd.Haiyan 314300,China;Suzhou Nuclear Power Research Institute,Suzhou 215004,China)
出处 《全面腐蚀控制》 2020年第6期35-39,共5页 Total Corrosion Control
关键词 红外线热成像 二回路系统 阀体 壁厚 infrared thermography secondary circuit valve body wall thickness
  • 相关文献

参考文献6

二级参考文献20

  • 1[1]Xavier Maldague. Nondestructive Testing Monographs and Tracts (Volume 7) Infrared Methodology and Technology[M]. Amsterdam: Gordon and Breach Science Publishers, 1992.
  • 2[2]Stanley Roderic K, Moore Patric O, Mclntire Paul.Nondestructive Testing Handbook (Volume 9) Special Nondestructive Testing Methods[M]. Columbus: American Society for Nondestructive Testing, 1995.
  • 3[3]Liou TM, Chen CC, Tsai TW. Heat transfer and fluid flow in a square duct with 12 different shaped vortex generators[J]. Journal of Heat Transfer, 2000, 122(2) :327-335.
  • 4[4]Wurzbach Richard N, Seith David A. Infrared monitoring of power plant effluents and heat sinks to optimize plant efficiency[A]. Proceedings of SPIE[C]. Orlando: 2000. 24-27.
  • 5[5]Rozenblit R, Simkhis M, et al. Heat transfer in horizontal solid-liquid pipe flow[J]. International Journal of Multiphase Flow, 2000,26(8): 1235- 1246.
  • 6[6]Yamawaki Shigemichi, Yoshida Toyoaki, et al. Fundamental heat transfer experiments of heat pipes for turbine cooling[A]. Proceedings of the International Gas Turbine & Aeroengine Congress & Exposition [C]. Orlando:1997.2-5.
  • 7[7]Qin Yuwen, Bao Naikeng. Thermographic nondestructive testing technique for delaminated defects in composite structure[A]. Proceedings of SPIE[C]. Orlando: 1995.
  • 8[8]Maser Kenneth R, Zarghamee Mehdi S. Proceedings of the Speciality Conference on Infrastructure Condition Assessment[C]. Boston: 1997.25-27.
  • 9[9]Maldague Xavier. Pipe inspection by infrared thermography[J]. Materials Evaluation, 1999, 57 ( 9 ): 899-902.
  • 10高俊,张维,刘忠等.核电站高压加热器水室隔板穿孔原因分析[A].核电站设备可靠性及失效分析国际研讨会论文集[C].2011:29-34.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部