期刊文献+

基于FP-growth关联规则的图书馆数据快速挖掘算法研究 被引量:15

Research on Library Data Fast Mining Algorithm Based on FP-growth Association Rules
下载PDF
导出
摘要 作为一种模糊关联规则挖掘算法,FP-growth算法在执行效率上明显优于Apriori算法。但是由于模糊属性的不足和空间复杂度较大,导致FP-growth算法在处理大型事务数据库,例如图书馆数据库时,无法实现有效的多层关联规则挖掘。因此,提出一种改进的FP-growth关联规则算法,能够快速向读者进行个性化图书推荐。首先,该算法把大型图书事务数据库根据首项的事务,划分为若干子数据库,并构建相应的子FP-tree结构;然后,采用实时过滤掉层次树中不是频繁项的父项来缩小扫描空间。实验结果表明:相比Apriori算法和标准FP-growth算法,提出的改进FP-growth关联规则算法在运行效率方面有明显提升,为图书的推荐工作提供了科学依据。 As a fuzzy association rule mining algorithm,the FP-growth algorithm is significantly better than the Apriori algorithm in execution efficiency.However,due to the lack of fuzzy attributes and large space complexity,the FP-growth algorithm cannot implement efficient multi-level association rule mining when dealing with large transaction databases,such as library databases.Therefore,an improved FP-growth association rule algorithm is proposed,which can quickly make personalized book recommendation to readers.First,the algorithm divides the large book transaction database into several sub-databases according to the first transaction,and constructs the corresponding sub-FP-tree structure.Then,the scan space is narrowed down by filtering out the parent steps of the hierarchy tree that are not frequent items in real time.The experimental results show that compared with the Apriori algorithm and the standard FP-growth algorithm,the proposed improved FP-growth association rule algorithm has a significant improvement in operational efficiency,which provides a scientific basis for the recommendation work of the book.
作者 文芳 黄慧玲 李腾达 王佳斌 WEN Fang;HUANG Huiling;LI Tengda;WANG Jiabin(Nanchang Normal University,Nanchang 330032,China;College of Engineering,Huaqiao University,Quanzhou 362021,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第6期189-194,共6页 Journal of Chongqing University of Technology:Natural Science
基金 江西省社会科学规划项目“面向MOOCs环境高校图书馆的功能定位研究”(15YD006) 厦门市科技局产学研协同创新项目(3502Z20173046)。
关键词 数据挖掘 图书馆 模糊关联规则 APRIORI FP-GROWTH 运行效率 data mining library fuzzy association rules Apriori FP-growth operational efficiency
  • 相关文献

参考文献3

二级参考文献39

  • 1徐成香.基于数据挖掘技术的学生信息系统开发[J].硅谷,2009,2(16). 被引量:1
  • 2毕建欣,张岐山.关联规则挖掘算法综述[J].中国工程科学,2005,7(4):88-94. 被引量:51
  • 3丁丽萍,周博文,王永吉.基于安全操作系统的电子证据获取与存储[J].软件学报,2007,18(7):1715-1729. 被引量:8
  • 4柴晟,成飏,李学锋.基于改进Apriori算法的评教系统应用研究[J].微计算机信息,2007,23(05X):218-220. 被引量:5
  • 5MORADI M, KEYVANPOUR M R. An analytical review of XML association rules mining [ J]. Artificial Intelligence Review, 2015, 43(2) : 277 -300.
  • 6SONG S J, KIM E H, KIM H G, et al. Query-based association rule mining supporting user perspective [ J]. Computing, 2011, 93 (1):1-25.
  • 7AGRAWAL R, SRIKANT R. Fast algorithms for mining associationrules [ C]// Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann, 1994:21-30.
  • 8AGRAWAL R, IMIELINSKI T SWAMI A. Mining association rules between sets of items in large databases [ J]. ACM SIGMOD Re- cord, 1993, 22(2): 207-216.
  • 9HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation [J]. ACM SIGMOD Record, 2000, 29(2): 1 -12.
  • 10EL-HAJJ M, ZAIANE O R. COFI approach for mining frequent itemsets revisited [ C]// Proceedings of the 2004 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Dis- covery. New York: ACM, 2004:70-75.

共引文献52

同被引文献167

引证文献15

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部