期刊文献+

个体及团体异构多方面评分行为建模 被引量:2

Modeling the Effects of Individual and Group Heterogeneity on Multi-Aspect Rating Behavior
下载PDF
导出
摘要 【目的】除了提供总体评分,多方面评分系统还可以提供更详细的方面评分,因此它可以帮助消费者更好地理解商品和服务。通过对多方面评分系统评分模式的建模,我们可以更好地发现潜在的评分组以及定量地理解这些评分组的评分行为。另外,这种建模也可以帮助服务提供者更好地改进他们的服务以吸引更多消费者。但是,由于多方面评分系统的复杂特性,对它的建模存在很多挑战。【方法】为了解决这些问题,本文提出了一种两步框架来从多方面评分系统中学习评分模式。详细地说,我们首先提出一种多分解关系学习方法(MFRL)来得到用户和商品的方面因素矩阵。在MFRL中,我们将矩阵分解,多任务学习和任务关系学习引入到同一个优化框架内。然后,我们将MFRL学习得来的用户和商品向量表征作为输入,通过高斯混合模型来构建组与组之间总体评分预测。【结果】我们在真实数据集上验证了提出的研究框架。大量实验结果表明我们提出的方法的有效性。【结论】用户异质性会潜在地影响用户的评分行为,因此在对个体及团体的评分行为进行建模时,要充分考虑到目标异质性带来的影响。 [Objective]Multi-aspect rating system could help customers better understand the item or service,because it provides not only the overall rating but also more detailed aspect ratings.By modeling the rating patterns on multi-aspect rating systems,we can better find out latent rating groups and quantitatively understand the rating behaviors lie in these groups.This can also help service providers improve their service and attract more targeted customers.However,due to the complex nature of multi-aspect rating system,it is challenging to model its rating patterns.[Methods]To address this problem,in this paper,we propose a two-step framework to learn the rating patterns from multi-aspect rating systems.Specifically,we first propose a multi-factorization relationship learning(MFRL)method to obtain the user and item aspect factor matrices.In MFRL,we unify matrix factorization,multi-task learning and task relationship learning into one optimization framework.And then,we model the rating patterns by exploiting group-wise overall rating prediction via mixture regression,whose inputs are the factor vectors of users and items learned from MFRL method.[Results]We apply the proposed framework on a real-world dataset(i.e.,the crawled hotel rating dataset from TripAdvisor.com)to evaluate the performance of our proposed method.Extensive experimental results demonstrate the effectiveness of the proposed framework.[Conclusions]Individual and Group Heterogeneity could affect the behaviors behind the rating acts,which should be taken into account in modeling the rating patterns.
作者 刘鲍鹏 赵宵飒 胡一睿 傅衍杰 Liu Kunpeng;Zhao Xiaosa;Hu Yirui;Fu Yanjie(Department of Computer Science,University of Central Florida,Orlando,FL 32816,United States;School of Information Science and Technology,Northeast Normal University,Changchun,Jilin 130024,China;Population Health Sciences,Geisinger,Danville,PA 17822,United States)
出处 《数据与计算发展前沿》 2020年第2期59-77,共19页 Frontiers of Data & Computing
关键词 多方面评分 推荐系统 多任务学习 关系学习 用户行为 Multi-Aspect Rating Recommender System Multi-Task Learning Relationship Learning User Behavior
  • 相关文献

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部