期刊文献+

基于遗憾最小化算法的谣言抑制与演化博弈模型 被引量:1

An evolutionary game model based on regret minimization algorithm for rumor suppression
下载PDF
导出
摘要 谣言扩散与控制效果受社交网络结构、用户决策影响。传统模型网络结构简单且较少考虑用户决策的影响。为此基于图论与遗憾最小化算法,提出一种用于分析社交图谱上用户决策与谣言控制的演化博弈模型。在采用规则图论建模的基础上,利用演化博弈与复制动态方程研究影响用户决策的因素,并在策略更新规则中采取遗憾匹配与动态折扣。仿真实验结果验证,该模型可有效反映用户决策对谣言扩散的影响,提高谣言抑制效果,并揭示网络聚类系数、风险阈值等对谣言控制的影响。 The effect of rumor diffusion and control is influenced by the user′s decision and social network structure.The traditional model complex network structure is simple and less consider the influence of user decision.Based on graph theory and regret minimization algorithm,this paper proposes an evolutionary game model for analyzing user decisions and rumor control on social graphs.On the basis of modeling,evolutionary games and replication dynamic equations are used to study the factors affecting user decisions,and regret matching and dynamic discounts are adopted in the policy update rules.Simulation results verify that the model can effectively reflect the influence of user decision on rumor diffusion,improve the rumor suppression effect,and reveal the influence of network clustering coefficient and risk threshold on rumor control.
作者 臧正功 丁箐 Zang Zhenggong;Ding Qing(School of Software,University of Science and Technology of China,Hefei 230051,China)
出处 《信息技术与网络安全》 2020年第7期61-66,77,共7页 Information Technology and Network Security
基金 国家自然科学基金项目(61672485)。
关键词 演化博弈 遗憾匹配 图论 社交网络 evolutionary game regret match graph theory social network
  • 相关文献

参考文献1

二级参考文献15

  • 1Osborne M, Rubinstein A. A Course in Game Theory [M]. Cambridge, MA: MIT Press, 1994: 200-201.
  • 2Billings D, Burch N, Davidson A, et al. Approximating game-theoretic optimal strategies for full-scale poker [C] // Proc of the 18th Int Joint Conf on Artificial Intelligence. Mahwah, NJ: Lawrence Erlbaum Associates, 2003: 661-668.
  • 3Hoda S, Gilpin A, Pena J, et al. Smoothing techniques for computing nash equilibria of sequential games [J]. Mathematics of Operations Research, 2010, 35(2): 494-512.
  • 4Zinkevich M, Johanson M, Bowling M, et al. Regret minimization in games with incomplete information [C] // Proc of the 21st Annual Conf on Neural Information Processing Systems. Vancouver, CA: Curran Associates Inc., 2007: 1729-1736.
  • 5Gibson R, Lanctot M, Burch N, et al. Generalized sampling and variance in counterfactual regret minimization [C] //Proc of the 26th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2012: 1355-1361.
  • 6Johanson M, Bard N, Lanctot M, et al. Efficient Nash equilibrium approximation through monte carlo counterfactual regret minimization [C] //Proc of the 11th Int Conf on Autonomous Agents and Multiagent Systems (AAMAS). Liverpool, UK: International Foundation of Autonomous Agents and Multi-Agent Systems (lFAAMAS) Press, 2012: 837-846.
  • 7Lanctot M, Waugh K, Zinkevich M, et al. Monte Carlo sampling for regret minimization in extensive games [C] // Proc of the 23rd Annual Conf on Neural Information Processing Systems. Vancouver, CA: Curran Associates Inc. ,2009: 1078-1086.
  • 8Johanson M, and Bowling M. Data biased robust counter strategies [C] I!Proc of the 12th Int Conf on Artificial Intelligence and Statistics (AIST A TS). Brookline, MA: Microtome Publishing, 2009: 264-271.
  • 9Ganzfried S, and Sandholm T. Game theory-based opponent modeling in large imperfect-information games [C] //Proc of the 10th lnt Conf on Autonomous Agents and Multi-Agent Systems (AAMAS). Liverpool, UK: International Foundation of Autonomous Agents and Multi-Agent Systems CIFAAMAS) Press, 2011: 533-540.
  • 10Sutton R, Barto A. Reinforcement Learning: An Introduction [M]. Cambridge, MA: MIT Press, 1998.

共引文献7

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部