摘要
为有效提升公安部门在实践工作中的犯罪预测能力,提出基于DBSCAN算法的A区犯罪预测方法。该方法采用了时空分析可视化技术和DBSCAN算法,对A区的犯罪数据进行分析。首先,对A区的犯罪数据进行描述性统计分析;然后,利用DBSCAN算法构建犯罪预测模型,并进行可视化处理;最后,通过对不同类型犯罪进行分析,预测犯罪热点,识别犯罪模式。实验结果表明,与传统的经验预测相比,该方法具有更好的预测效果,为公安机关打击犯罪和优化警力配置提供了决策依据。
In order to effectively improve the crime prediction ability of the public security department in practical work,this paper proposed a crime prediction method in area A based on DBSCAN algorithm.This method used the spatio-temporal analysis visualization technology and DBSCAN algorithm to analyze the crime data in area A.Firstly,this method conducted descriptive statistical analysis of the crime data in Area A;then,it used the DBSCAN algorithm to build a crime prediction model and visualized it;finally,it predicted the hot spots of crime and identify crime patterns by analyzing different types of crime.The results show that compared with traditional empirical prediction,this method has a better prediction effect and provides a decision basis for public security organs to fight crime and optimize police force allocation.
作者
赵传鑫
Zhao Chuanxin(School of National Security and Counter Terrorism,People′s Public Security University of China,Beijing 100038,China)
出处
《信息技术与网络安全》
2020年第7期72-77,共6页
Information Technology and Network Security
基金
中央高校基本科研业务费项目(2019JKF335)。