期刊文献+

带广义积分边值条件的分数阶朗之万方程的解

Solutions of the Fractional Langevin Equation with Generalized Integral Boundary Value Conditions
下载PDF
导出
摘要 研究了一类带有广义分数阶积分边值条件的非线性分数阶朗之万方程。利用Banach压缩映像原理和Leray-Schauder度理论,得到该边值问题解的存在性和唯一性。 In this paper,we investigate a class of nonlinear fractional Langevin differential equations with generalized fractional integral boundary value problems.Through the Banach's contraction mapping principle,Leray-Schauder degree theory,some existence result of solutions are obtained.
作者 商启发 周宗福 SHANG Qi-fa;ZHOU Zong-fu(School of Mathematical Sciences, Anhui University, Hefei 230601, China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2020年第3期159-162,170,共5页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金项目(11371027) 安徽省自然科学基金项目(1608085MA12)。
关键词 分数阶 边值问题 CAPUTO导数 不动点定理 fractional order boundary value problem Caputo's derivative fixed point theorem
  • 相关文献

参考文献1

二级参考文献5

  • 1Li C E, Luo X N, Zhou Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Comput Math, Appl, 2010, 59: 1363-1375.
  • 2PODLUBNY I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York, London, Toronto: Academic Press, 1999.
  • 3BAI Z B, LV Haishen. Positive solutions for boundary value problem of nonlinear fractional differ- ential equation[J]. J Math Anal Appl, 2005, 311: 495-505.
  • 4BAI Z B. On positive solutions of a nonlocal fractional boundary value problem[J]. Nonlinear Anal, 2010, 72: 916-924.
  • 5Zhong W Y, Lin Wei. Nonlocal and multiple-point boundary value problem for fractional differential equations[J]. Comput Math Appl, 2010, 59: 1345-1351.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部