期刊文献+

Automatic Video Segmentation Based on Information Centroid and Optimized SaliencyCut

原文传递
导出
摘要 We propose an automatic video segmentation method based on an optimized SaliencyCut equipped with information centroid(IC)detection according to level balance principle in physical theory.Unlike the existing methods,the image information of another dimension is provided by the IC to enhance the video segmentation accuracy.Specifically,our IC is implemented based on the information-level balance principle in the image,and denoted as the information pivot by aggregating all the image information to a point.To effectively enhance the saliency value of the target object and suppress the background area,we also combine the color and the coordinate information of the image in calculating the local IC and the global IC in the image.Then saliency maps for all frames in the video are calculated based on the detected IC.By applying IC smoothing to enhance the optimized saliency detection,we can further correct the unsatisfied saliency maps,where sharp variations of colors or motions may exist in complex videos.Finally,we obtain the segmentation results based on IC-based saliency maps and optimized SaliencyCut.Our method is evaluated on the DAVIS dataset,consisting of different kinds of challenging videos.Comparisons with the state-of-the-art methods are also conducted to evaluate our method.Convincing visual results and statistical comparisons demonstrate its advantages and robustness for automatic video segmentation.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第3期564-575,共12页 计算机科学技术学报(英文版)
基金 This work was supported in part by the Major Project of the New Generation of Artificial Intelligence of National Key Research and Development Project,Ministry of Science and Technology of China under Grant No.2018AAA0102900 the National Natural Science Foundation of China under Grant Nos.61572328 and 61973221 the Natural Science Foundation of Guangdong Province of China under Grant Nos.2018A030313381 and 2019A1515011165 The Hong Kong Polytechnic University under Grant Nos.P0030419 and P0030929.
  • 相关文献

参考文献3

二级参考文献29

  • 1Chen T, Zhu J Y, Shamir A, Hu S M. Motion-aware gra.di- ent domain video composition. IEEE Transactions on Im- age Processing, 2013, 22(7): 2532-2544.
  • 2Lu S P, Zhang S H, Wei J, Hu S M, Martin R R. Time- line editing of objects in video. IEEE Trans. Vis. Cornput. Graph., 2013, 19(7): 1218-1227.
  • 3Xu K, Li Y, Ju T, Hu S M, Liu T Q. Efficient affinity-based edit propagation using K-D tree. ACM Trans. Graph., 2009, 28(5): 118:1-118:6.
  • 4Ma L Q, Xu K. Efficient antialiased edit propagation for images and videos. Computers & Graphics, 2012, 36(8): 1005-1012.
  • 5Liu J Y, Sun J, Shum H Y. Paint selection. ACM Trans. Graph., 2009, 28(3): 69:1-69:7.
  • 6Tong R F, Zhang Y, Ding M. Video brush: A novel in- terface for efficient video cutout. Comput. Graph. Forum, 2011, 30(7): 2049-2057.
  • 7Hu S M, Chen T, Xu K, Cheng M M, Martin R R. Internet visual media processing: A survey with graphics and vision applications. The Visual Computer, 2013, 29(5): 393-405.
  • 8Wang J, Cohen M F. Image and video matting: A survey. Foundations and Trends? in Computer Graphics and Vision, 2007, 3(2): 97-175.
  • 9Agarwala A, Hertzmann A, Salesin D, Seitz S M. Keyframebased tracking for rotoscoping and animation. ACM Trans. Graph., 2004, 23(3): 584-59l.
  • 10Bai X, Wang J, Simons D, Sapiro G. Video SnapCut: Robust video object cutout using localized classifiers. ACM Trans. Graph., 2009, 28(3): 70:1-70:11.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部