期刊文献+

Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization 被引量:11

原文传递
导出
摘要 An efficient method employing a Principal Component Analysis(PCA)-Deep Belief Network(DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study.In order to reduce the number of design variables for aerodynamic optimizations,the PCA technique is implemented to the geometric parameters obtained by parameterization method.For the purpose of predicting aerodynamic parameters,the DBN model is established with the reduced design variables as input and the aerodynamic parameters as output,and it is trained using the k-step contrastive divergence algorithm.The established PCA-DBN-based surrogate model is validated through predicting lift-to-drag ratios of a set of airfoils,and the results indicate that the PCA-DBN-based surrogate model is reliable and obtains more accurate predictions than three other surrogate models.Then the efficient optimization method is established by embedding the PCA-DBN-based surrogate model into an improved Particle Swarm Optimization(PSO)framework,and applied to the robust aerodynamic design optimizations of Natural Laminar Flow(NLF)airfoil and transonic wing.The optimization results indicate that the PCA-DBN-based surrogate model works very well as a prediction model in the robust optimization processes of both NLF airfoil and transonic wing.By employing the PCA-DBN-based surrogate model,the developed efficient method improves the optimization efficiency obviously.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第6期1573-1588,共16页 中国航空学报(英文版)
基金 co-supported by Aeronautical Science Foundation of China(No.2015ZBP9002) China Scholarship Council。
  • 相关文献

参考文献7

二级参考文献55

共引文献316

同被引文献60

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部