摘要
探讨基于土地利用/土地覆盖变化(land-use and land-cover change,LUCC)监督分类算法的覆被对乌鲁木齐市热岛效应的响应,为乌鲁木齐市生态环境可持续发展提供科学理论依据。使用RS和GIS技术,运用趋势分析法进行趋势分析并指出地表温度(land surface temperature,LST)产品与观测到的LST值之间的关系;选择分类效果最好的算法;通过覆被动态度和开发度研究覆被动态变化;借助SPSS软件进行主成分分析,探讨覆被与地表温度之间的关系,从而得知与热岛效应的关系。结果表明:1)通过Landsat TM数据反演的LST能反映站点测得的温度。2)1990年-2014年的年平均LST为22.57℃,1998年-2006年呈上升趋势。3)不同监督分类算法的分类精度不同,支持向量机分类精度最高。4)24年中综合土地利用动态度处于先下降后上升趋势。5)用8月LST、水域、建设用地、未利用地、植被5种因素用SPSS软件进行主成分分析,水域和植被抑制LST,建设用地和未利用地促进LST。
This paper discusses the response of the cover of supervision classification algorithm based on LUCC,land-use and land-cover change to the heat island effect in Urumqi,and provides scientific theoretical basis for the sustainable development of ecological environment in Urumqi.RS and GIS technologies are used to analyze the trend and point out the relationship between the surface temperature(land surface temperature,LST)products and the observed LST value.The algorithm with the best classification effect is selected.The dynamic change of cover is studied through passive attitude and exploitation degree.Through principal component analysis with the help of SPSS software,the relationship between cover and surface temperature is discussed,and the relationship between cover and heat island effect is obtained.The results show that:1)LST obtained through Landsat TM data inversion can reflect the temperature measured at the site.2)the annual average LST from 1990 to 2014 is 22.57℃,and it shows an increasing trend from 1998 to 2006.3)different supervised classification algorithms have different classification accuracy,and SVM has the highest classification accuracy.4)in the past 24 years,the dynamic attitude of comprehensive land use has been declining first and then rising.5)SPSS software is used for principal component analysis of 5 factors including August LST,water area,construction land,unused land and vegetation,water area and vegetation are inhibited by LST,and construction land and unused land are promoted by LST.
作者
马术
蒲智
MA Shu;PU Zhi(School of Computer and Information Engineering,Xinjiang Agricultural University,Urumqi 830052)
出处
《计算机与数字工程》
2020年第5期999-1003,1059,共6页
Computer & Digital Engineering
基金
国家自然科学基金项目(编号:41361082)资助。