期刊文献+

一种基于链表的改进Apriori算法

A Modified Apriori Algorithm Based on Linked List
下载PDF
导出
摘要 随着大数据时代的到来,作为关联规则挖掘的经典算法,Apriori算法受到了广泛的关注和研究,论文在总结现有研究的基础上提出了一种基于链表的改进Apriori算法。该算法首先扫描事务数据库计算频繁-1项集并采用链表进行压缩存储,避免了重复扫描事务数据库带来的额外开销,然后在频繁-N项集(N≥1)的基础上利用高效的位运算对链表进行合并操作生成频繁N+1项集,对频繁N+1项集(N≥1)的产生过程进行了优化,提高了Apriori算法的效率。 With the advent of the era of big data,Apriori algorithm as a classical algorithm of association rules mining,it has been widely concerned and studied.Based on the summary of existing research,this paper proposes an improved Apriori algorithm based on linked list.Firstly,the algorithm scans the transaction database to compute frequent-1 itemsets and compresses them with linked lists,which avoids the additional overhead of scanning the transaction database repeatedly.Then,on the basis of frequent-N itemsets(N≥1),it combines the linked lists with efficient bit operations to generate frequent-N+1 itemsets.The generation process is optimized to improve the efficiency of the Apriori algorithm.
作者 顾鹏 GU Peng(School of Computer Engineering and Science,Nanjing University of Science and Technology,Nanjing 210094)
出处 《计算机与数字工程》 2020年第5期1024-1028,1044,共6页 Computer & Digital Engineering
关键词 关联规则 链表 APRIORI association rules linked list Apriori
  • 相关文献

参考文献6

二级参考文献75

  • 1黄龙军,段隆振,章志明.一种基于上三角项集矩阵的频繁项集挖掘算法[J].计算机应用研究,2006,23(11):25-26. 被引量:11
  • 2李晓虹,尚晋.一种改进的新Apriori算法[J].计算机科学,2007,34(4):196-198. 被引量:26
  • 3AGRAWAL R, IMIELINSKI T, SWANI A. Mining association rules between sets of items in large databases[ C]//Proc of ACM SIGMOD Conference on Management of Data. 1993 : 63-65.
  • 4HAN Jia-wei, PEI Jian, YIN Yin-wen, et al. Mining frequent pat- terns without candidate generation : a frequent-pattern" tree approach [ J]. Data Mining and Knowledge Discovery,2004,8 ( 1 ) : 53- 87.
  • 5AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large database [ C ]//Proc of the 20th Interational Conference on Very Large Database. 1994: 73-75.
  • 6GOUDA K, ZAKI M J. Efficiently mining maximal frequent itemsets [ C ]//Proc of IEEE International Conference on Data Mining. [ S. 1. ] : IEEE Computer Press,2001 : 163-170.
  • 7Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Database[ C]//Proceedings of the ACM SIG- MOD Conference on Management of Data. Washington, USA: ACM Press, 1993.
  • 8高明 刘希玉 盛立.基于矩阵相乘的Apriori改进算法.计算机科学,2005,32(7):209-212.
  • 9Schlimmer J. Mushroom data set[ DB/OL]. [ 2010 - 04 - 30 ]. http :// archive, ics. uci. edu/ml/machine - learning - databases/mush - room/agaricus - lepiota, data.
  • 10HaHan J W, Pei J, Yin Y W. Mining frequent itemsets without candidate generation. In: The 2000 ACM SIGMOD International Conference on Management of data (SIGMOD’00), New York, 2000. 1-12.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部