摘要
在复Hilbert空间中,有界线性算子L被应用在推广框架中时,其成立的条件不同.讨论由2个g-Bessel序列定义的有界线性算子L满足可逆的、满的等不同条件时,其在g-Besselian框架中的应用,并根据文中的结果证明了其他文献中的相关结论.
Corresponding conditions were needed when the bounded linear operator was applied in extended frame in a complex Hilbert space.In this paper,we discussed the applications of a bounded linear operator L defined by two g-Bessel sequences in g-Besselian frame when it met the different conditions such as reversibility,surjection and so on,and the results proved the related conclusion in the literature.
作者
黄喜娇
肖祥春
HUANG Xijiao;XIAO Xiangchun(School of Mathematics and Sciences, Anyang University, Anyang 455000, China;School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, China)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2020年第4期33-37,共5页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金青年基金资助项目(71603243)
河南省高等学校科研基金重点资助项目(17A110015)。