摘要
为了降低标签和特征噪声对钢板表面缺陷分类的影响,提出一种抗噪声的超球体支持向量机(anti-noise hypersphere support vector machine,简称AHSVM)分类模型.鉴于鲸鱼优化算法(whale optimization algorithm,简称WOA)能对AHSVM分类模型的参数进行寻优且能提高运行效率,提出AHSVM与WOA结合的AHSVM-WOA算法.4种分类算法对6类热轧钢板表面缺陷的分类结果表明,AHSVM-WOA算法有良好的分类效果,在抑制标签和特征噪声方面性能优良,缩短了参数选择的时间.
In order to reduce the adverse effects of label noise and feature noise in the process of classification for steel surface defects,an anti-noise hypersphere support vector machine(AHSVM)was proposed.Because whale optimization algorithm(WOA)could find the best parameters of the AHSVM classification model and improve the execution efficiency,it was combined with AHSVM to build the AHSVM-WOA algorithm.Four classification algorithms were used to classify six types of hot-rolled steel surface defects.The experiment results showed that the AHSVM-WOA classification model had the good classification performance,especially in restraining the adverse effects of label noise and feature noise.Moreover,the AHSVM-WOA algorithm reduced the time of parameter selection.
作者
冯瑶
储茂祥
邓鑫
齐新雨
FENG Yao;CHU Maoxiang;DENG Xin;QI Xinyu(School of Electronics and Information Engineering, University of Science and Technology, Anshan 114051, China)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2020年第4期65-71,共7页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(51674140)
辽宁省科学技术基金资助项目(20180550067)
辽宁省高等学校基本科研项目(2017LNQN11)。
关键词
钢板表面缺陷
超球体支持向量机
标签噪声
特征噪声
鲸鱼优化算法
steel plate surface defects
hypersphere support vector machine
label noise
feature noise
whale optimization algorithm