摘要
为降低多功能视频编码标准(VVC)编码的复杂度,提出一种面向VVC的帧内快速编码算法.首先,根据视频内容的时空域相关性,使用反向传播(BP)神经网络对CU的划分深度进行预测;然后,使用统计概率对CU的划分模式进行选择;最后,编码时跳过不必要的划分模式以节省编码时间.实验结果表明,与原始编码器相比,该算法平均可节省59.82%的编码时间,且在同等编码质量情况下比特率的平均增加值(BDBR)仅为2.05%.
In order to reduce the coding computational complexity of versatile video coding(VVC),a fast intra coding algorithm is proposed in this paper.First,based on the spatial-temporal coherence of the video content,a back propagation(BP)neural network is built to make CU depth prediction.Then,we select the partition modes of CU based on statistical probability.Finally,the unnecessary partition modes are skipped to reduce the encoding time of the encoder.Experimental results show that the proposed algorithm can save 59.82%encoding time with 2.05%Bjontegaard delta bit rate(BDBR)on average compared to the original encoder.
作者
吴陆狄
翟宇轩
黄雨航
邢开应
房颖
林丽群
WU Ludi;ZHAI Yuxuan;HUANG Yuhang;XING Kaiying;FANG Ying;LIN Liqun(College of Physics and Information Engineering,Fuzhou University,Fuzhou,Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information,Fujian 350108,China)
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2020年第4期431-437,共7页
Journal of Fuzhou University(Natural Science Edition)
基金
国家自然科学基金资助项目(61671152)
福建省教育厅科研资助项目(JAT160075,JT180055)。