期刊文献+

基于空间聚类的FMCW雷达双人行为识别方法 被引量:6

Two-persons activity recognition method for FMCW radar based on spatial information clustering
下载PDF
导出
摘要 为实现双人场景下人体行为的识别,利用调频连续波(frequency modulated continuous wave,FMCW)雷达提出一种基于空间聚类的双人行为识别方法.该方法采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)聚类算法将FMCW雷达采集到的坐标数据聚类成不同的聚类群,使得每一个聚类群对应于单一人体的行为,再对其进行数据处理、特征提取后分别采用机器学习方法分类,实现双人场景下人体行为的识别.文中分析行为特征量、动作关键点以及分类器对识别准确率的影响.实验结果表明,在两人场景中该方法对跌倒、坐下和行走的检测准确率分别可以达到100%、93.8%和87.3%. In order to recognize human behavior in the two-persons scenario,a method based on spatial clustering for frequency modulated continuous wave(FMCW)radar is proposed.In this method,DBSCAN(density-based spatial clustering of applications with noise)clustering algorithm is used to cluster the coordinate data collected by FMCW radar into different clustering groups,so that each clustering group corresponds to the behavior initiated by a single human body,and then machine learning method is used to classify them respectively after processing data,extracting features and so as to realize identification of body behavior under two-persons scenario.This paper analyzed the influence of behavior features,key points and classifiers on recognition accuracy.The experiments show that the recognition accuracy of the three activities:fall,sitting and walking in 2-person scenario can reach 100%,93.8%and 87.3%respctively.
作者 许志猛 尹辉斌 林佳慧 XU Zhimeng;YIN Huibin;LIN Jiahui(College of Physics and Information Engineering,Fuzhou University,Fuzhou,Fujian 350108,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2020年第4期445-450,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(61401100) 福建省自然科学基金资助项目(2018J01805) 福州大学人才基金(GXRC-18083)。
关键词 行为识别 跌倒检测 聚类算法 毫米波雷达 behavior recognition fall detection clustering algorithm millimeter-wave radar
  • 相关文献

参考文献6

二级参考文献35

  • 1朱月妹,袁浩斌,陈雷.老年人跌倒危险因素的调查[J].护理实践与研究,2007,4(10):5-7. 被引量:23
  • 2潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242. 被引量:115
  • 3Adam A, Rivlin E, Shimshoni I, et al. Robust Real-Time UnusualEvent Detection Using Multiple Fixed-Location Monitors [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(3) :555-560.
  • 4Xiang Tao, Gong Shaogang. Incremental and Adaptive Abnormal Behaviour Detection[J]. Computer Vision and Image Understand- ing, 2008,111 ( 1 ) : 59-73.
  • 5Zhang Dongping, Peng Huailiang, Yu Haibin, et al. Crowd Abnor- mal Behavior Detection Based on Machine Learning [J]. Informa- tion Technology Journal, 2013,12 (6) : 1199-1205.
  • 6Bing Sun, Yang Wang, Jacob Banda. Gait Characteristic Analysis and Identification Based on the iPhone's Accelerometer and Gy- rometer[J]. Sensors. 2014,14:17037-17054.
  • 7Trzaskowski B, Jedrzejczak W W, Pilka E, et al. Automatic Re moval of Souomotor Waves fi'om Auditory Brainstem Responses [J]. Computers in Biology and Medicine, 2013,43 : 524-532.
  • 8Tang K L, Wang Y, Liu H, et al. Design and Implementation of Push Notification System Based on the MQTT Protocol [ C ]//inter- national Conf on Information Science and Computer Applications, 2013:116-119.
  • 9冯少荣,肖文俊.DBSCAN聚类算法的研究与改进[J].中国矿业大学学报,2008,37(1):105-111. 被引量:87
  • 10夏鲁宁,荆继武.SA-DBSCAN:一种自适应基于密度聚类算法[J].中国科学院研究生院学报,2009,26(4):530-538. 被引量:81

共引文献183

同被引文献56

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部