期刊文献+

基于文本分类的政府网站信箱自动转递方法研究 被引量:4

Automatic Transferring GovernmentWebsite E-Mails Based on Text Classification
原文传递
导出
摘要 【目的】为改善政府网站领导信箱传统人工转递方式存在的人力、时间成本较高以及工作人员负担较重等问题,研究网站来信的自动转递方法。【方法】选择较有代表性的分类算法,包括朴素贝叶斯、决策树、随机森林以及多层神经网络,对北京、合肥和深圳的市长信箱文本数据进行对比实验,进而设计一套基于文本分类的政府网站信箱自动转递方法,并给出相应的应用建议。【结果】神经网络算法在市长信箱文本的分类表现最优,宏平均精确度和召回率均达0.85以上,且所有微平均指标均达0.93以上;朴素贝叶斯算法次之;随机森林算法的宏平均精确度很高,但召回率较差;决策树算法的精确度和召回率都较一般。【局限】未能兼顾来信数量不均衡对结果的影响,且实验时剔除了数据量过小的部门的来信数据,这在实际应用中可能会存在一定偏差。【结论】本文设计的政府网站信箱自动转递方法能够优化领导信箱运作机制,对提升线上政民互动效率,降低人力及行政成本具有积极意义。 [Objective]This research proposes a method to automatically transferring e-mails received by government websites,aiming to reduce labor costs of managing public email boxes.[Methods]First,we chose four representative classification algorithms,including Naïve Bayes,Decision Tree,Random Forest and Multi-Layer Perception,and compared their classification resutls of e-mails received by the websites of Mayor’s Offices in Beijing,Hefei and Shenzhen.Then,we designed a method of automatically transferring these emails.Finally,we gave suggestions on the application of our method in the real world settings.[Results]Multi-Layer Perception yielded the best performance in our study,with the macro average precision and recall reaching more than 0.85,and all micro average indicators reaching more than 0.93.Naïve Bayes took the second place.Random Forest had a high macro average precision,but poor recall score.Decision Tree had an average precision and recall results.[Limitations]We did not examine the impacts of skewed distribution of received emails and eliminated the departments receiving few emails.[Conclusions]The proposed method optimizes the operation of public emails,which improves the efficiency of online government and reduces administrative costs.
作者 王思迪 胡广伟 杨巳煜 施云 Wang Sidi;Hu Guangwei;Yang Siyu;Shi Yun(School of Information Management,Nanjing University,Nanjing 210023,China;Government Data Resources Institution of Nanjing University,Nanjing 210023,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第6期51-59,共9页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金面上项目“电子政务服务价值共创机制及实现模式实证研究”(项目编号:71573117)的研究成果之一。
关键词 领导信箱 自动转递 文本分类 多层神经网络 流程优化 Leader’s Mailbox Automatic Transfer Text Classification Multi-Layer Perception Process Optimization
  • 相关文献

参考文献11

二级参考文献122

同被引文献79

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部