期刊文献+

基于智能算法的无铆钉连接工艺优化 被引量:2

Optimization on rivetless connection process based on intelligent algorithm
原文传递
导出
摘要 为解决无铆钉连接接头强度优化问题,建立了接头强度优化的数学模型,并提出一种基于遗传算法和CAD、CAE软件实时协同仿真的优化策略。在该方法中,使用UG构建模具的几何参数化模型,采用Deform计算连接成形过程,用接头强度公式计算接头强度,并作为优化指标;最后,使用遗传算法进行智能化控制使得接头强度最大化。1.4 mm厚的6061-T4铝合金板材被用于优化测试,得到了较优的模具形状和接头形状;为了测试该算法的优化效果,将优化后的模具进行连接实验。1.4 mm厚的6061-T4铝合金板材的连接接头形状与优化仿真的形状高度相似,并且接头具有较高的强度。结果表明,该优化算法对于提升接头强度具有显著的效果。 In order to solve the joint strength optimization problem of rivetless connection,the mathematical model of joint strength was established,and an optimization strategy based on genetic algorithm and real-time collaborative simulation of software CAD and CAE was proposed.In this method,the geometric parametric model of die was built by software UG,and the joint forming process was calculated by Deform.Then,the joint strength was calculated by the joint strength calculation formula and regarded as the optimization index.Finally,the use of genetic algorithm for intelligent control maximized the joint strength.Furthermore,the 6061-T4 aluminum alloy plate with the thickness of 1.4 mm was used to optimize the test,and the better die and joint shapes were obtained.In order to test the optimization effect of this algorithm,the optimized die was tested for connection.The joint shape of 6061-T4 aluminum alloy plate with the thickness of 1.4 mm was similar to that of optimized simulation,and the joint had high strength.The results show that the optimization algorithm has significant effect on improving the joint strength.
作者 邓长勇 肖贵乾 Deng Changyong;Xiao Guiqian(Institute of Intelligent Manufacturing and Automotive,Chongqing Technology and Business Institute,Chongqing 401520,China;School of Materials Science and Engineering,Chongqing University,Chonqing 400044,China)
出处 《锻压技术》 CAS CSCD 北大核心 2020年第6期204-210,共7页 Forging & Stamping Technology
基金 重庆市教育委员会科学技术研究资助项目(KJQN201804008) 重庆市高等学校青年骨干教师项目(2016-46)。
关键词 无铆钉连接 遗传算法 协同优化 参数化模型 强度优化 rivetless connection genetic algorithm collaborative optimization parametric model strength optimization
  • 相关文献

参考文献8

二级参考文献63

共引文献85

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部