摘要
本文研究鲁棒凸优化问题拟近似解的最优性条件和对偶理论.首先利用鲁棒优化方法,在由约束函数的共轭函数的上图给出的闭凸锥约束规格条件下,建立了拟近似解的最优性充要条件.其次给出了鲁棒凸优化问题拟近似解在Wolf型和Mond-weir型对偶模型下的强(弱)对偶定理.最后给出具体实例验证了本文获得的结果.
In this paper,we study quasi approximate solution for a robust convex optimization problem in the face of data uncertainty.By using the robust optimization approach,we first establish optimality conditions for quasi approximate solution under a closed convex cone constraint qualification which is given by conjugate function for the constraint function.In addition,we also characterizeWolf type and Mond-weir type duality theorems for quasi approximate solution on the robust convex optimization problem.Moreover,some examples are given to illustrate the obtained results.
作者
孔翔宇
刘三阳
KONG Xiangyu;LIU Sanyang(School of Mathematics and Information Science,Xianyang Normal University,Xianyang 712000,China;School of mathematics and statistics,Xidian University,xi'an 710071,China)
出处
《应用数学》
CSCD
北大核心
2020年第3期634-642,共9页
Mathematica Applicata
基金
宁夏高等学校科学研究项目(NGY2017158)。
关键词
鲁棒凸优化
次微分
拟近似解
最优性条件
对偶理论
Robust convex optimization
Subdifferential
Quasi approximate solution
Optimality condition
Duality theorem