期刊文献+

鲁棒凸优化问题拟近似解的刻划 被引量:1

Characterizations of Quasi Approximate Solution for RobustConvex Optimization Problems
下载PDF
导出
摘要 本文研究鲁棒凸优化问题拟近似解的最优性条件和对偶理论.首先利用鲁棒优化方法,在由约束函数的共轭函数的上图给出的闭凸锥约束规格条件下,建立了拟近似解的最优性充要条件.其次给出了鲁棒凸优化问题拟近似解在Wolf型和Mond-weir型对偶模型下的强(弱)对偶定理.最后给出具体实例验证了本文获得的结果. In this paper,we study quasi approximate solution for a robust convex optimization problem in the face of data uncertainty.By using the robust optimization approach,we first establish optimality conditions for quasi approximate solution under a closed convex cone constraint qualification which is given by conjugate function for the constraint function.In addition,we also characterizeWolf type and Mond-weir type duality theorems for quasi approximate solution on the robust convex optimization problem.Moreover,some examples are given to illustrate the obtained results.
作者 孔翔宇 刘三阳 KONG Xiangyu;LIU Sanyang(School of Mathematics and Information Science,Xianyang Normal University,Xianyang 712000,China;School of mathematics and statistics,Xidian University,xi'an 710071,China)
出处 《应用数学》 CSCD 北大核心 2020年第3期634-642,共9页 Mathematica Applicata
基金 宁夏高等学校科学研究项目(NGY2017158)。
关键词 鲁棒凸优化 次微分 拟近似解 最优性条件 对偶理论 Robust convex optimization Subdifferential Quasi approximate solution Optimality condition Duality theorem
  • 相关文献

参考文献1

二级参考文献1

共引文献7

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部