期刊文献+

紧支撑正交复小波滤波器的参数化 被引量:2

Parameterizations of Orthogonal Complex Wavelet Filterswith Compact Support
下载PDF
导出
摘要 针对复小波在实际应用中比实小波更具有优势的特点,给出了紧支撑正交复小波滤波器参数化的更简单的形式,比FENG等(2013)减少了参数的个数,更易于得到正交的复小波,从而为工程人员选择合适的复小波带来更大的便利,并给出了算例. The complex wavelets have more advantages than real wavelets in some practical applications,In this paper,a simpler form of parameterization for orthogonal complex wavelet filters with compact support are given,The number of parameters is less than that in FENG et al.(2013),It is easier to obtain orthogonal complex wavelets by our method,which will bring more convenience for engineers,Moreover,some examples are given.
作者 李林杉 胡琳 杨玉洁 方怡 师国伟 LI Linshan;HU Lin;YNANG Yujie;FANG Yi;SHI Guowei(Institute of Fundamental and Interdisciplinary Sciences,Beijing Union University,Beijing 100101,China;Air Force Medical Center,Beijing 100142,China)
出处 《应用数学》 CSCD 北大核心 2020年第3期728-732,共5页 Mathematica Applicata
基金 国家自然科学基金(11601030) 北京联合大学科研项目(Zk50201909)。
关键词 复小波滤波器 正交 紧支撑 参数化 Complex wavelet filter Orthogonality Compact support Parameterization
  • 相关文献

参考文献2

二级参考文献14

  • 1S.L Peng, Construction of two-dimensional compactly supported orthogonal wavelet filter With linear phase, Acta Mathematica Sinica, English Series, 18:4 (2002), 1-8.
  • 2S.L. Peng, N dimensional finite wavelet filter, Journal of Computational Mathematics, 21:5(2003), 595-602.
  • 3J. Kovacevic and M. Vtterli, Nonseparable multidimensional perfect reconstrction filter banks and wavelet bases for Rn, IEEE Tran. on Information Theory, 38:2 (1992), 533-555.
  • 4Wenjie He and Mingjun Lai, Example of Bivaxiate Nonseperable Compactly Supported Orthonormal Continuous Wavelet Applications in Signal and Image Processing IV, Proceeding of SPIE, 3169 (1997), 303-314.
  • 5J. Zhou, M.N. Do, and J. Kovacevic, Special paraunitary matrices, Cayley transform, and multidimensional orthogonal filter banks, IEEE Tran. on Image Processing, 15:2 (2006),511-519.
  • 6许以超,线性代数于矩阵论,高教出版社,1992.
  • 7Daubechies I. Ten Lectures on Wavelets[M]. Philadelphia: SIAM, 1992.
  • 8Lawton W. Applications of complex valued wavelet transforms to subband decomposition[J]. IEEE Trans- action on Signal Process, 1993, 44(12): 3566-3568.
  • 9Lina J M. Complex daubechies wavelets[J]. Applied and Computational Harmonic Analysis, 1995, 2(3): 219-229.
  • 10Clonda D, et al. Complex daubechies wavelets: properties and statistical image modeling[J]. IEEE Trans- action on SignM Process, 2004, 84(1): 1-23.

共引文献3

同被引文献30

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部