期刊文献+

弹性约束边界条件下复合材料层合梁振动特性研究 被引量:2

Vibration Analysis of Laminated Composite Beams with Elastic Boundary Conditions
下载PDF
导出
摘要 在一阶剪切变形理论和哈密顿原理的基础上,利用Haar小波离散方法,提出了一种简单、有效的评估一般弹性边界条件下复合材料层合梁振动特性的分析模型。结构位移变量及其相关导数的基函数分别采用Haar小波及其积分表示。在此基础上,利用边界条件求出积分过程中的常数,进而将层合梁的运动方程和边界条件进一步转化为一组线性代数方程。通过求解该线性代数方程,可得到复合材料层合梁的自由振动特性。通过数值算例对比验证了本文模型的正确性。此外,给出了复合材料层合梁的一些新的计算结果,可作为基准解为后续数值方法或解析法提供对比数据。 A simple and efficient method is proposed to evaluate the vibration behavior of the laminated composite beams under elastic boundary conditions with Haar wavelet discretization method,in terms of the first order shear deformation theory and the Hamilton principle.The basis functions for the displacement variables and their derivatives are expressed in terms of Haar wavelet and their integral,respectively.On the basis,the boundary conditions are used to obtain the constants in the integration process,and then the equations of motion and the boundary conditions of the laminated beams are further converted into a group of linear algebraic equations.The natural frequencies of laminated composite beams are obtained by solving the algebraic equations.The correctness and efficiency of the present method is verified by a series of numerical examples.Some new results for the laminated composite beams are presented,which may serve as benchmark solutions.
作者 赵长龙 钟锐 周强 赵兴 Zhao Changlong;Zhong Rui;Zhou Qiang;Zhao Xing(CRCC Qingdao Sifang Co.,Ltd.,Shandong Qingdao 266111,China;State Key Laboratory of High Performance Complex Manufacturing,College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China)
出处 《机械科学与技术》 CSCD 北大核心 2020年第6期954-959,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家重点研发计划项目(2018YFB1201901)资助。
关键词 HAAR小波 复合材料层合梁 一阶剪切变形理论 自由振动 Haar wavelet discretization method laminated composite beams first order shear deformation free vibration
  • 相关文献

参考文献6

二级参考文献42

  • 1蒋宝坤,张渲铃,李映辉.湿热环境对旋转复合材料梁摆振特性的影响[J].复合材料学报,2015,32(2):579-585. 被引量:8
  • 2邱志平,马一,王晓军.含不确定参数的复合材料板振动的区间分析法[J].北京航空航天大学学报,2004,30(7):682-685. 被引量:10
  • 3Kant T, Swaminathan K. Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories [J]. Journal of Sound Vibration, 2001, 241: 319-327.
  • 4Kant T, Swaminathan K. Analytical solutions for the static analysis of laminated composite and sandwichplates based on a higher order refined theory [J]. Composite Structures, 2002, 56: 329-344.
  • 5Matsunaga H. Vibration and buckling of multilayered composite beam according to higher order deformation theories [J]. Journal of Sound Vibration, 2001, 246(1): 47-62.
  • 6Matsunaga H. Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory [J]. Compos Structures, 2006, 72: 177-192.
  • 7Matsunaga H. Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading [J]. Composite Structures, 2007(77): 249-262.
  • 8Reddy J N. A simple higher-order theory for laminated composite plates [J]. Journal of Applied Mechanics, 1984, 51(12): 745-752.
  • 9Whitney J M, Pagano N J. Shear deformation in heterogeneous anisotropic plates [J]. Joumal of Applied Mechanics, 1970, 37:1031 - 1036.
  • 10Wu Z, Chen W J. An assessment of several displacement-based theories for the vibration andstability analysis of laminated composite and sandwich beams [J]. Composite Structures, 2008, 84: 337-349.

共引文献17

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部