期刊文献+

子空间约束下矩阵方程A^TXB+B^TX^TA=D的解及最佳逼近 被引量:2

THE SOLUTION AND OPTIMAL APPROXIMATION OF MATRIX EQUATION A^TXB+B^TX^TA=D UNDER SUBSPACE CONSTRAINT
原文传递
导出
摘要 约束矩阵方程求解是指在满足一定约束条件下求矩阵方程(组)的解.在子空间约束条件下,利用共轭梯度法,结合线性投影算子,得到矩阵方程A^TXB+B^TX^TA=D的解,进一步得到其最佳逼近.最后用数值例子证实了算法的有效性. Solving the constrained matrix equation problem refers to finding the solution of the matrix equation(group)under certain constraint conditions.Under the constraint of subspace,by conjugate gradient method and linear projection operator,the solution of matrix equation A^TXB+B^TX^TA=D and its optimal approximation are obtained.Finally,numerical examples are further used to verify the effectiveness of the algorithm.
作者 冯艳昭 张澜 Feng Yanzhao;Zhang Lan(Science of College,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《计算数学》 CSCD 北大核心 2020年第2期246-256,共11页 Mathematica Numerica Sinica
关键词 子空间约束 共轭梯度 投影算子 最佳逼近 Subspace constraints Conjugate gradient Projection operator Optimal approximation
  • 相关文献

参考文献8

二级参考文献47

  • 1Zhen-yunPeng,Xi-yanHu,LeiZhang.THE NEAREST BISYMMETRIC SOLUTIONS OF LINEAR MATRIX EQUATIONS[J].Journal of Computational Mathematics,2004,22(6):873-880. 被引量:3
  • 2袁永新.关于一类线性矩阵方程的对称解[J].工程数学学报,1998,15(3):25-29. 被引量:34
  • 3袁永新,戴华.矩阵方程A^TXB+B^TX^TA=D的极小范数最小二乘解[J].高等学校计算数学学报,2005,27(3):232-238. 被引量:16
  • 4张凯院,蔡元虎.矩阵方程AXB+CXD=F的参数迭代解法[J].西北大学学报(自然科学版),2006,36(1):13-16. 被引量:16
  • 5Yasuda K, Skelton R E. Assigning controllability and observability Graminans in feedback control[J].J.Guidance Control, 1990,14(5): 878-885
  • 6Fujioka H, Hara S. State covariance assignment problem with measurement noise:a unified approach based on a symmetric matrix equation[J]. Linear Algebra Appl., 1994,203/204: 579- 605
  • 7Chu k.-W. E. Symmetric solutions of linear matrix equation by matrix decompositions[J]. Linear Algebra Appl., 1989,119:35-50
  • 8Ben-Israel A, Greville T N E. Generalized inverse: Theory and Applications. 2nd Edition, NewYork: Springer Verlag, 2003
  • 9Peng Z Y. An iterative method for the least aquares symmetric solution of the linear matrix equation AXB = D. Appl. Math. Comput., 2005, 170:711-723
  • 10Braden H W. The equations A^TX±X^TA = B. SIAM J. Matrix Anal.Appl., 1998,20(2): 295-302

共引文献31

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部