期刊文献+

基于Chebyshev配置点谱方法的多孔介质平板通道内的流体流动数值模拟

Numerical simulation of fluid flow in a porous media parallel plate channel based on Chebyshev collocation spectral method
下载PDF
导出
摘要 本文基于Chebyshev配置点谱方法,利用数值模拟研究了多孔介质平板通道内的流体流动问题。针对动量方程的离散,空间上采用Chebyshev配置点谱方法,时间上采用准隐式格式离散,结合改进的投影算法(IPS)将速度和压力的计算解耦为一系列椭圆方程(泊松方程或亥姆霍兹方程),转换椭圆方程为矩阵方程形式后利用二步求解法求解矩阵方程。通过MATLAB编程实现对多孔介质平板通道内的流体流动问题的数值模拟并验证了程序的准确性。在此基础上,讨论了达西数(Da),雷诺数(Re)以及孔隙率(ε)对多孔介质平板通道内流体的速度分布、边界层厚度及入口长度的影响。 Based on Chebyshev collocation spectral method,the fluid flow in a porous media parallel plate channel was studied by numerical simulation.For the discretization of momentum equation,the Chebyshev collocation spectral method was adopted in space and quasi-implicit scheme was adopted in time.The velocity and pressure calculations were decoupled into a series of elliptic equations(Poisson equation or Helmholtz equation)by using the improved projection scheme(IPS).The elliptic equations were transformed into matrix equations,which were solved by the two-step method.The numerical simulation of fluid flow in the porous media parallel plate channel was realized by MATLAB programming and the accuracy of the program was verified.On this basis,the influences of Darcy number(Da),Reynolds number(Re)and porosity factor(ε)on velocity distribution,boundary layer thickness and inlet length of the fluid in the porous media parallel plate channel were discussed.
作者 李斌 李本文 陈元元 许学成 Li Bin;Li Benwen;Chen Yuanyuan;Xu Xuecheng(College of Materials Science and Metallurgical Engineering,Wuhan University of Science and Technology,Wuhan 430081,China;School of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《武汉科技大学学报》 CAS 北大核心 2020年第4期305-312,共8页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(51804234).
关键词 多孔介质 平板通道 Chebyshev配置点谱方法 IPS 流动特性 数值模拟 porous media parallel plate channel Chebyshev collocation spectral method IPS flow characteristic numerical simulation
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]王补宣.工程传热传质学:下册[M].北京:科学出版社,2002.
  • 2[2]VAFAI K, TIEN C L. Boundary and inertial effects on flow and heat transfer in porous media [J]. Int J Heat Mass Transfer, 1981,24:195-203.
  • 3[3]LAGE J L. The fundamental theory of flow through permeable media form Darcy to turbulence,transport phenomena in porous media [M]. Oxford:Pergamon, 1998.
  • 4[4]PAPANICOLAOU E, JALURIA Y. Mixed convection flow from a localized heat source in a cavity with conducting walls [J]. Heat Transfer:A, 1993, 23: 463-484.
  • 5[5]YILBAS B S, SHUJA S Z. Energy and entropy analysis in a square cavity with protruding body [J].Int J Energy Res, 2002,26:219-233.
  • 6[6]RAJI A, HASNAOUI M. Mixed convection heat transfer in a rectangular cavity ventilated and heated from the side [J]. Numer, Heat Transfer: A,1998, 33: 533-548.
  • 7[7]NAKAYAMA A. PC-Aided numerical heat transfer and convective flow [M]. London: CRC Press,1995.
  • 8[8]JIANG P X, MENG Li. Boundary condition and wall effect for forced convection heat transfer in sintered porous plate channels [J]. Int J Heat Mess Transfer, 2004, 47: 2073-2083.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部