期刊文献+

铜藻基活性炭/二氧化钛催化剂的制备及性能

Preparation and properties of Sargassum horneri activated carbon/titania photo-catalyst
下载PDF
导出
摘要 以铜藻作为生物质原料,以聚四氟乙烯作为活化剂,经过高温煅烧制备了铜藻基活性炭(AC),利用溶胶-凝胶法制备了纳米二氧化钛粒子(TiO2),在制备二氧化钛过程中加入一定量的铜藻基活性炭,制备了AC-TiO2。采用侧柏提取液还原后的AgNO3溶液对TiO2进行还原改性处理,成功制得AC-(TiO2-Ag)复合材料。样品的表征结果表明:AC负载后材料的禁带宽度发生了明显的红移,说明了对光的利用率提升,光降解性能明显改善,Ag改性进一步提升了这种效果,AC-(TiO2-Ag),AC-TiO2和TiO2的禁带宽度分别为2.41,2.58,3.26 eV。 Sargassum horneri was used as biomass raw material and polytetrafluoroethylene as activator.After high temperature calcination,Sargassum horneri-based activated carbon(AC)was prepared,and nano-titania particles(TiO2)were prepared by sol-gel method.A certain amount of Sargassum horneri-based activated carbon was added to prepare TiO2/AC.Using AgNO 3 solution reduced by platycladus orientalis extract to reduce and modify TiO2,AC-(TiO2-Ag)composite material was successfully prepared.The characterization results of the sample showed that the width of the band gap of the material has a significant red shift after AC loading,indicating that the utilization rate of light is improved,and the photodegradation performance is significantly improved and Ag modification further enhance this effect.The band gap widths of AC-(TiO2-Ag),AC-TiO 2,and TiO2 are 2.41,2.58 and 3.26 eV,respectively.
作者 游翰章 曾淦宁 杜明明 洪春仙 马源 YOU Hanzhang;ZENG Ganning;DU Mingming;HONG Chunxian;MA Yuan(College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310014,China)
出处 《发酵科技通讯》 CAS 2020年第2期90-94,共5页 Bulletin of Fermentation Science and Technology
基金 浙江省科技厅公益项目(LGF18D060002) 浙江省教育厅资助项目(Y201840671)。
关键词 二氧化钛 铜藻 活性炭 聚四氟乙烯 TiO2 Sargassum horneri activated carbon polytetrafluoroethylene Ag
  • 相关文献

参考文献6

二级参考文献77

  • 1田晓燕,高家鹏,司杰.发酵尾液提取菌体蛋白的探讨[J].发酵科技通讯,2012,41(1):3-4. 被引量:4
  • 2井立强,周强,王百齐,辛柏福,付宏刚,蔡伟民.表面修饰Ru的TiO_2纳米粒子的表征及其光催化活性[J].哈尔滨工业大学学报,2005,37(11):1543-1545. 被引量:4
  • 3吕倩,孟明,查宇清.高热稳定性纳米Au/TiO_2催化剂的制备与表征[J].催化学报,2006,27(12):1111-1116. 被引量:15
  • 4岳钦艳,解建坤,高宝玉,于慧,岳文文,张升晓,王晓娜.污泥活性炭对染料的吸附动力学研究[J].环境科学学报,2007,27(9):1431-1438. 被引量:86
  • 5Mills A, Belghazi A, Rodman D. Bromate removal from drinking water by semiconductor photocatalysis [J]. Water Research, 1996,30(9): 1973-1978.
  • 6Noguchi H, Nakajima A, Watanabe T, et al. Removal of bromate ion from water using TiO2 and alumina-loaded TiO2 photocatalysts[J]. Water Science and Technology, 2002, 46(11-12): 27-31.
  • 7Zhang X W, Zhang T, Ng J W, et al. Transformation of bromine species in TiO2 photocatalytic system [J]. Environmental Science& Technology, 2010, 44(1): 439-444.
  • 8Colmenares J C, Aramendia M A, Marinas A, et al. Synthesis, characterization and photocatalytic activity of different metal-dopedtitania systems [J]. Applied Catalysis a-General, 2006, 306: 120-127.
  • 9Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible lightirradiation [J]. Journal of Catalysis, 2003, 216(1-2): 505-516.
  • 10Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition: characterisation andphotonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst [J]. Water Research, 2004, 38(13): 3001-3008.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部