期刊文献+

基于LSTM的超短期光伏发电功率预测 被引量:4

LSTM-based Ultra Short-term Photovoltaic Power Prediction
下载PDF
导出
摘要 在当前环境下,光伏发电在能源供给中所占的比例越来越高,而对光伏发电厂的发电功率进行预测对电力系统调度十分重要。因此需要研究光伏功率预测,以便调度部门提前做好调度计划和风险规避。光伏发电功率对许多环境参数高度敏感,目前光伏发电功率预测大多仅围绕气象条件和历史数据建模,忽略了光伏设备本身性能与工作状态对发电功率的影响。为了进一步提高超短期光伏功率预测的预测精度,笔者针对多种可能影响光伏发电功率的数据进行建模,并进行仿真实验,结果表明本方法具有较高的精度,能够有效预测超短期光伏发电功率。 In the current environment,the proportion of photovoltaic power generation in the energy supply is getting higher and higher,and forecasting the power generation of photovoltaic power plants is very important for power system scheduling,so researching photovoltaic power forecasting helps dispatching departments to do well in advance Scheduling plans and risk aversion.Photovoltaic power generation is highly sensitive to many environmental parameters.At present,most photovoltaic power generation predictions are only modeled around meteorological conditions and historical data,ignoring the impact of the performance and working state of photovoltaic equipment on the power generation.In order to further improve the prediction accuracy of ultra-short-term photovoltaic power prediction,the operation status of the photovoltaic panel itself is combined with meteorological data to model,and simulation experiments are performed to verify the accuracy of the algorithm.
作者 管军霖 智鑫 GUAN Jun-lin;ZHI Xin(Guilin University of Electronic Technology,Guilin 541004,China)
出处 《通信电源技术》 2020年第8期123-125,共3页 Telecom Power Technology
关键词 长短期记忆网络 光伏发电 超短期预测 long short term memory photovoltaic ultra short-term forecasting
  • 相关文献

参考文献3

二级参考文献32

  • 1高亚静,周明,李庚银,李睿,肖利民.基于马尔可夫链和故障枚举法的可用输电能力计算[J].中国电机工程学报,2006,26(19):41-46. 被引量:31
  • 2Safie F M, Probabilistic modeling of solar power systems[C]// Reliability and Maintainability Symposium. Atlanta, Georgia, USA: IEEE, 1989: 425-430.
  • 3Tina G, Gagliano S, Raiti S. Hybrid solar wind power system probabilistic modeling for long-term performance assessment[J]. Solar Energy, 2006, 80(5): 578-588.
  • 4Chowdhury B H. Central-station photovoltaic plant with energy storage for utility peak load leveling[C]//Energy Conversion Engineering Conference. Washington DC, USA: Institute of Electrical and Electronics Engineers, 1989: 731-736.
  • 5Deshmukh M K, Deshmukh S S. Modeling of hybrid renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2008, 12(1): 235-249.
  • 6Kroposki B, Emery K, Myers D, et al. A comparison ofphotovoltaic module performance evaluation methodologies for energy ratings[J]// Proceedings of lth WCPEC. Hawaii, USA, 1994: 5-9.
  • 7Li Yingzi, Niu Jincang, Ru Luan, et al. Research of multi-power structure optimization for grid-connected photovoltaic system based on Markov decision-making model[C]//lnternational Conference on Electrical Machines and Systems. Wuhan, China, 2008: 2607-2610.
  • 8Li Yingzi, Luan Ru, Niu Jincang. Forecast of power generation for grid-connected photovoltaic system based on grey model and Markov chain[C]//3rd IEEE Conference on Industrial Electronics and Applications. Singapore, 2008: 1729-1733.
  • 9Perez R, Ineichen P, Seals R, et al. Modeling daylight availability and irradiance components from direct and global irradiance[J]. Solar Energy, 1990, 44(5): 271-289.
  • 10National Renewable Energy Laboratory. National solar radiation database user's manual(1961- 1990)[R]. Version 1.1. Washington DC, USA: National Renewable Energy Laboratory, 1994.

共引文献188

同被引文献68

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部