期刊文献+

基于共享逆近邻与指数核的密度峰聚类算法

Density peak clustering algorithm based on shared reverse nearest neighbors and exponential kernels
下载PDF
导出
摘要 针对密度峰聚类算法中局部密度定义和聚类分配策略的不足,提出了一种基于共享逆近邻与指数核的密度峰聚类算法。该算法利用样本的共享逆近邻点和指数核函数构造一种相似度,得到一种新的密度并将其应用在密度峰聚类算法中生成初始簇,然后将这些簇与凝聚层次聚类算法结合形成最终的类簇。数值实验证明:提出的基于共享逆近邻与指数核的密度峰聚类算法在真实数据集上的聚类结果要优于其他密度聚类算法,并能有效解决密度峰聚类算法中局部密度定义问题和聚类分配策略问题。 For the deficiency of local density definition and cluster allocation strategy in the density peak clustering algorithm,a density peak clustering algorithm based on shared reverse nearest neighbors and exponential kernels is proposed.The proposed algorithm defines the similarity based on shared reverse nearest neighbors of the sample combined with the exponential kernel function,and then a new density is formed and applied in the density clustering algorithm to generate the initial clusters,which are combined with the agglomeration hierarchical clustering algorithm to form the final cluster.The numerical experiments show that the clustering results of the proposed algorithm on real datasets are better than other density clustering algorithms,and it effectively solves the problem of local density definition and cluster allocation strategy in density peak clustering algorithm.
作者 高月 杨小飞 马盈仓 汪义瑞 GAO Yue;YANG Xiaofei;MA Yingcang;WANG Yirui(School of Science,Xi’an Polytechnic University,Xi’an 710048,China;School of Mathematics&Statistics,Ankang University,Ankang 725000,Shaanxi,China)
出处 《纺织高校基础科学学报》 CAS 2020年第2期78-84,共7页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金(11501435)。
关键词 密度峰聚类算法 共享逆近邻 指数核 相似度 凝聚层次聚类算法 density peak clustering algorithm shared reverse nearest neighbor exponential kernel similarity agglomerative hierarchical clustering algorithm
  • 相关文献

参考文献5

二级参考文献43

  • 1Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullets, K.R. Fisher discriminant analysis with kernels[J], Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop ,1999:41-48.
  • 2Scholkopf, B.; Mika, S.; Burges, C.J.C.; Knirsch, P.; Muller, K.-R.; Ratsch, G.; Smola, A.J.; Input space versus feature space in kernel-based methods [J], Neural Networks, IEEE Transactions,1999,10(5):1000-1017.
  • 3Muller, K.-R.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B.; An introduction to kernel-based learning algorithms[J], Neural Networks, IEEE Transactions,2001,12(2): 181-201.
  • 4谈克雄,李福祺.基于距离的放电模式识别方法[J].高压电器,1997,33(3):3-7. 被引量:7
  • 5Han J W, Kamber M. Data Mining Concepts and Techniques. 2nd ed. New York:Elsevier Inc, 2006. 383-424.
  • 6Jain A K. Data clustering:50 years beyond K-means. Pattern Recogn Lett, 2010, 31:651-666.
  • 7Williamson B, Guyon I. Clustering:science or art?. J Mach Learn Res, 2012, 27:65-80.
  • 8Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315:972-976.
  • 9Rodri?uez A, Laio A. Clustering by fast search and find of density peaks. Science, 2014, 344:1492-1496.
  • 10Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw Learn Syst, 2005, 16:645-678.

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部