摘要
针对采样控制系统的渐近稳定性问题.结合整个采样间隔[tk,tk+1)的特征信息和N阶B-L(Bessel-Legendre)不等式,首次提出一个N-相关的双边闭环L-K(LyapunovKrasovskii)泛函.利用N阶B-L不等式估计L-K泛函的导数,建立了采样控制系统的渐近稳定性新条件.最后通过2个数值算例验证了所得条件的有效性和优越性.
This paper investigates the problem of asymptotic stability for sampleddata control systems.Based on the characteristic information on the whole sampling interval[tk,tk+1)combined with the N-order Bessel-Legendre(B-L)inequality,an Ndependent-based two-side looped Lyapunov-Krasovskii(L-K)functional is proposed for the first time.Then,by employing the B-L inequality to estimate the derivative of the L-K functional,A new asymptotic stability condition is established for sampled-data control systems.Finally,two numerical examples are provided to verify the effectiveness and superiority of proposed method.
作者
练红海
肖伸平
邓鹏
LIAN Honghai;XIAO Shenping;DENG Peng(School of Wind Energy Engineering,Hunan Electrical College of Technology,Xiangtan 411101;Key Laboratory for Electric Drive Control and Intelligent Equipment of Hunan Province,Zhuzhou 4120083;School of Electrical and Information Engineering,Hunan University of Technology,Zhuzhou 412008)
出处
《系统科学与数学》
CSCD
北大核心
2020年第5期783-796,共14页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(61741308,6167225)
湖南省自然科学基金(2018JJ4075,2018JJ2095,2018JJ5010)
湖南电气职业技术学院自然科学基金重点项目(2019ZK002,2020ZK001)
优秀人才培育基金项目(2020RC001)资助课题。