期刊文献+

知识图谱驱动的广东省自然资源大数据挖掘模型构建框架 被引量:9

Framework for Knowledge Graph-driven Construction of Natural Resources Big Data Mining Model in Guangdong Province
下载PDF
导出
摘要 新一轮机构改革,形成了全国自然资源统一管理的新体系,在机构改革前各部门分别建设的"烟囱式"数据与应用系统,正在集成为自然资源大数据以及构建自然资源大数据挖掘的框架,然而这主要是基于专家的知识领域逐个构建,尚未形成通用的框架。本文提出知识图谱驱动的自然资源大数据挖掘模型构建框架,将专家的知识固化在自然资源大数据挖掘模型的知识图谱表达中,提高了挖掘模型的复用能力,并在广东省国有土地对经济发展保障潜力评价的应用案例中得到有效验证,具有广阔的应用前景。 The latest governmental organization reform led to a new administrative system of big ministry of natural resources.The isola-ted data sets and application systems constructed by natural resources related departments before the merger of the natural resources ministry,are being integrated to the natural resources big data and the framework of natural resources big data mining,which mainly relying on experts’domain knowledge case by case without a common framework.This paper is intended to propose a knowledge-graph driven framework for constructing natural resources big data mining models,which is applied to describe and store expert’s knowledge.The framework improves the reuse of expert’s knowledge.Tested on the model of evaluating potential capabilities of the state-owned land of Guangdong Province supporting economic development,the effectiveness of this framework is demonstrated.This framework is widely applicable in natural resources big data mining.
作者 孟蕾 王国峰 MENG Lei;WANG Guofeng(Land and Resources Technology Center of Guangdong Province,Guangzhou 510075,China;Wuda GeoStar Information Technology Co.,Ltd.,Wuhan 430000,China)
出处 《测绘与空间地理信息》 2020年第6期91-94,共4页 Geomatics & Spatial Information Technology
关键词 自然资源大数据 数据挖掘模型 知识图谱 规则驱动 natural resources big data data mining model knowledge graph rule-driven
  • 相关文献

参考文献4

二级参考文献228

  • 1马文峰,杜小勇.关于知识组织体系的若干理论问题[J].中国图书馆学报,2007,33(2):13-17. 被引量:27
  • 2刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 3Marx V. Biology: The big challenges of big data. Nature, 2013, 498: 255-260.
  • 4Wheeler D L, Barrett T, Benson D A, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res, 2007, 35(Suppl 1): D5-D12.
  • 5Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291: 1304-1351.
  • 6ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489: 57-74.
  • 7Saleem M, Padmanabhuni S S, Ngomo A C N, et al. Linked cancer genome atlas database. In: Proceedings of the 9th International Conference on Semantic Systems. Association for Computing Machinery, 2013. 129-134.
  • 8Via M, Gignoux C, Burchard E G. The 1000 Genomes Project: New opportunities for research and social challenges. Genome Med, 2010, 2: 3.
  • 9Schaller R R. Moore's law: Past, present and future. IEEE, 1997, 34: 52-59.
  • 10McAfee A, Brynjolfsson E, Davenport T H, et al. Big Data. The management revolution. Harvard Bus Rev, 2012, 90: 61-67.

共引文献1322

同被引文献102

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部