期刊文献+

基于复合物信息和亚细胞定位信息的关键蛋白质识别

Identification of Essential Proteins Based on Protein Complexes Informationand Subcellular Locallization Information
下载PDF
导出
摘要 针对蛋白质相互作用(protein-protein interaction,PPI)网络中存在大量噪声,以及现有关键蛋白识别方法的挖掘效率和预测准确率不高等问题,提出一种基于复合物信息和亚细胞定位信息(united protein complexes and subcellular locallizations,PCSL)来识别关键蛋白质。首先,整合PPI网络的拓扑属性、生物属性和空间属性构建加权网络,以降低PPI网络中噪声的影响,达到提升PPI网络的可靠性的目的;其次,根据复合物信息和空间信息,设计一种衡量蛋白质关键性的度量,从多维角度强化关键蛋白质在PPI中的重要程度;最后,利用基于PPI网络拓扑特性的寻优算法,设计一种新的试探策略,提升挖掘关键蛋白质的效率。PCSL方法应用在DIP(database of interacting protein)数据集上进行验证。实验结果表明,与其他10种关键蛋白质识别方法相比较,该方法具有较好的识别性能,能够识别更多的关键蛋白质。 Due to the noise in protein-protein interaction(PPI)network,the poor efficiency of detecting process,as well as the poor identification accuracy of essential proteins,a method was proposed.Protein complexes and subcellular locallizations(PCSL)were united.The model was based on protein complex information and subcellular locallizations to identify essential proteins.Firstly,this topological data,biological data and subcellular locallization data were integrated to construct weighted network to reduce the noise(the false positive and the false negative)impact in the original PPI network.Secondly,according to the complex property and space property of essential proteins,a measure was designed to measure the essentiality of proteins from weighted network,which emphasized the importance of the essential proteins from multi-dimension angle.Finally,based on optimal algorithm for essential proteins,a new probe strategy was designed to improve the efficiency of detecting essential proteins from weighted network.The PCSL method was applied to the DIP(database of interacting protein)dataset for predicting essential proteins.Compared with other ten methods of predicting essential proteins,the experimental results show that this method can identify more essential proteins and have better performance on predicting essential proteins.
作者 毛伊敏 章宇盟 胡健 MAO Yi-min;ZHANG Yu-meng;HU Jian(School of Information Engineering,Jiangxi University of Science&Technology,Ganzhou 341000,China;College of Applied Science,Jiangxi University of Science&Technology,Ganzhou 341000,China)
出处 《科学技术与工程》 北大核心 2020年第17期6970-6976,共7页 Science Technology and Engineering
基金 国家自然科学基金(41562019,41530640) 江西省自然科学基金(GJJ161566,20161BAB203093) 江西省教育厅科技项目(GJJ181504,GJJ151528)。
关键词 蛋白质相互作用网络 亚细胞定位 空间属性 复合物 关键蛋白质 protein interaction network subcellular locallization space property protein complex essential protein
  • 相关文献

参考文献2

二级参考文献20

  • 1Yook S H, Oltvai Z N, Barabasi A L. Functional and topo- logical characterization of protein interaction networks. Pro- teomics, 2004, 4(4): 928-942.
  • 2Tang X W, Wang J X, Liu B B, Li M, Chen G, Pan Y. A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinformatics, 2011, 12(1): 339.
  • 3Wu F X, Ressom H, Dunn M J, Wang J X, Peng X Q, Li M, Pan Y. Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics, 2013, 13(2): 301-312.
  • 4Wang J X, Peng X Q, Peng W, Wu F X. Dynamic pro- tein interaction network construction and applications. Pro- teomics, 2014, 14(4-5): 338-352.
  • 5Mantzaris A V, Bassett D S, Wymbs N F, Estrada E, Porter M A, Mucha P J, Grafton S T, Higham D J. Dynamic net- work centrality summarizes learning in the human brain. Journal of Complex Networks, 2013, 1(1): 83-92.
  • 6Tu B P, Kudlicki A, Rowicka M, McKnight S L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 2005, 310(5751): 1152-1158.
  • 7Zhao B H, Wang J X, Li M, Wu F X, Pan Y. Prediction of essential proteins based on overlapping essential mod- ules. 1EEE Transactions on NanoBioscience, 2014, 13(4): 415-424.
  • 8Hawkins T, Chitale M, Luban S, Kihara D. PFP: automated prediction of gene ontology functional annotations with con- fidence scores using protein sequence data. Proteins: Struc- ture, Function, and Bioinformatics, 2009, 74(3): 566-582.
  • 9Zhao B H, Wang J X, Li M, Wu F X, Pan Y. Detect- ing protein complexes based on uncertain graph model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(3): 486-497.
  • 10Schwikowski B, Uetz P, Fields S. A network of protein protein interactions in yeast. Nature Biotechnology, 2000 18(12): 1257-1261.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部