期刊文献+

基于黎曼流形的MIMO雷达目标检测方法 被引量:3

Target Detection Method for MIMO Radar Based on Riemannian Manifold
下载PDF
导出
摘要 针对样本数少时不能用样本协方差代替统计协方差的问题,提出了一种基于黎曼流形的单基地MIMO(Multiple-Input Multiple-Output)雷达目标检测新方法。该方法利用拓普利兹-厄米特正定(THPD:Toeplitz-Hermitian Positive Definite)矩阵会在信号空间形成黎曼流形的特点,通过burg递推法分别生成单快拍下接收信号和噪声的THPD协方差矩阵,并计算噪声THPD协方差矩阵的黎曼均值,将其与接收信号THPD协方差矩阵之间的黎曼距离作为检测统计量。该方法可增加黎曼流形上接收信号与噪声间的差异性。仿真结果表明,与传统的基于欧几里得距离的检测方法相比,显著提高了低信噪比和单快拍下的目标检测性能。 Aiming at the problem that the sample covariance can not replace the statistical covariance when the number of samples is small,a novel target detection method based on Riemannian manifold is proposed for monostatic MIMO(Multiple-Input Multiple-Output)radar.It takes advantage of the fact that the THPD(Toeplitz-Hermitian Positive Definite)matrix can form Riemannian manifold in signal space.The single-snapshot THPD covariance matrices of received signals and noises are respectively generated through the burg algorithm,and the Riemannian mean of the noise THPD covariance matrices is calculated.The Riemannian distance between the THPD covariance matrices of received signal and noise is taken as the detection statistic.The method can increase the dissimilarity between the received signal and noise on the Riemannian manifold.The simulation results indicate that compared to the traditional method which uses the Euclidean distance,the proposed method can significantly improve the target detection performance under low SNR(Signal-to-Noise Ratio)and singlesnapshot.
作者 周美含 姜宏 孙帅 ZHOU Meihan;JIANG Hong;SUN Shuai(College of Communication Engineering,Jilin University,Changchun 130012,China)
出处 《吉林大学学报(信息科学版)》 CAS 2020年第3期237-242,共6页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(61371158)。
关键词 雷达工程 目标检测 黎曼流形 burg递推法 radar engineering target detection riemannian manifold burg algorithm
  • 相关文献

参考文献2

二级参考文献15

  • 1Udriste C. Convex Functions and Optimization Methods on Riemannian Manifolds [ M ]. Dordrecht : Kluwer Academic Publishers, 1994.
  • 2Daniel A, Juan F, Fernando Lopez-Mesas. Nonsmooth Analysis and Hamihon-Jacobi Eguations on Riemannian Manifolds [J]. Journal of Functional Analysis, 2005, 220(2) : 304-361.
  • 3Ledyaev Y S, Zhu Q J. Techniques for Nonsmooth Analysis on Smooth Manifolds Ⅰ: Local Problems [ J ]. Lecture Notes in Control and Information Sciences, 2004, 301: 283-297.
  • 4Ledyaev Y S, Zhu Q J. Techniques for Nonsmooth Analysis on Smooth Manifolds Ⅱ : Deformations and Flows [ J ]. Lecture Notes in Control and Information Sciences, 2004, 301 : 299-311.
  • 5Daniel A, Juan F. Proximal Calculus on Riemannian Manifolds [ J ]. Mediterranean Journal of Mathematics, 2005, 2(4) : 437-450.
  • 6Boothby W M. An Introduction to Differential Manifolds and Riemannian Geometry [ M ]. 2nd ed. Orlando: Academic Press, 1988: 10-150.
  • 7Clarke F H, Ledyaev Y S, Stenn R J, et al. Nonsmooth Analysis and Control Theory, Grad Texts in Math [ M ]. New York: Springer, 1998 : 69-96.
  • 8Clarke F H. Optimization and Nonsmooth Analysis [ M]. New York: John Wiley and Sons, Inc, 1983: 25-95.
  • 9Minami M. Weak Pareto-optimal Necessary Conditions in a Nondifferentiable Muhiobjective Progrogram on a Banach Space [J]. JOTA, 1983, 41(3): 451-461.
  • 10Borwein J M, Zhu Q J. Techniques of Variational Analysis [ M ]. Berlin : Springer, 2005 : 5-30.

共引文献13

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部