期刊文献+

多层去噪极限学习机 被引量:6

Multilayer denoising extreme learning machine
原文传递
导出
摘要 为提高极限学习机-自编码器(ELM-AE)所提取特征的有效性和鲁棒性,提升多层极限学习机(ML-ELM)性能,抑制噪声的影响,本文将极限学习机(ELM)与去噪自编码器(DAE)相结合,在ELM-AE中引入退化过程,提出了极限学习机-去噪自编码器(ELMDAE);并通过堆叠ELM-DAE,构建了多层去噪极限学习机算法(ML-D-ELM)。ML-DELM首先通过堆叠的ELM-DAE逐层提取具有高有效性、鲁棒性的抽象特征,而后运用ELM进行分类,完成由抽象特征到类别标签的映射。在多个常用数据集上的实验结果表明:与ELM、SAE-ELM、ML-ELM算法相比,无论是否存在噪声,ML-D-ELM的分类准确率都有明显上升。对于MNIST数据集,ML-D-ELM分类准确率可以达到98.81%。 In order to improve the effectiveness and robustness of the features extracted by the extreme learning machine autoencoder(ELM-AE),improve the performance of the multilayer extreme learning machine(ML-ELM) and suppress the influence of noise, an extreme learning machine denoising autoencoder(ELM-DAE)is proposed. This is based on combining the extreme learning machine(ELM)with denoising autoencoder(DAE) and introducing the corrupting process into ELM-AE,Then the multilayer denoising extreme learning machine(ML-D-ELM)is also proposed by stacking ELM-DAE. In ML-D-ELM,the highly effective and robust features are extracted by the stacked ELM-DAE,and then the classification is completed by ELM to map the abstract features to class label. Experimental results on some benchmark datasets show that ML-D-ELM can provide higher accuracy than ELM,SAE-ELM,and ML-ELM,even when considering noise. For MNIST,the accuracy of ML-D-ELM can reach98.81%·.
作者 王晓丹 来杰 李睿 赵振冲 雷蕾 WANG Xiao-dan;LAI Jie;LI Rui;ZHAO Zhen-chong;LEI Lei(Air and Missile Defense College,Air Force Engineering University,Xi'an 710051,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期1031-1039,共9页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61876189,61273275,61806219,61703426).
关键词 人工智能 极限学习机 深度学习 去噪自编码器 特征提取 鲁棒性 artificial intelligence extreme learning machine deep learning denoising autoencoder feature extraction robustness
  • 相关文献

参考文献4

二级参考文献18

  • 1Huang G B, Zhu Q Y, Siew C K. Extreme learning machine., theory and applications[J]. Neurocomputing, 2006, 70(1 - 3) : 489 - 501.
  • 2Huang G B, Ding X J, Zhou H M. Optimization method based extreme learning machine for classification[J]. Neurocompu ting, 2010, 74(1): 155-163.
  • 3Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Trans. on Sys- tems, Man, and Cybernetics-Part B : Cybernetics, 2012, 42 (2) 513 - 529.
  • 4Zong W W, Huang G B, Chen Y Q. Weighted extreme learning machine for imbalance learning [J]. Neurocomputing, 2013, 101: 229 - 242.
  • 5Horata P, Chiewchanwattana S, Sunat K. Robust extreme learning machine[J]. Neurocomputing, 2013,102 : 31 - 44.
  • 6Lan Y, Hu Z J, Soh Y C, et al. An extreme learning machineapproach for speaker recognition[J]. Neural Computing and Applications, 2013, 22(3/4): 417-425.
  • 7Xu Y, Dai Y Y, Dong Z Y, et al. Extreme learning machine based predictor for real-time frequency stability assessment of electric power systems[J]. Neural Computing and Applica tions, 2013, 22(3/4): 501-508.
  • 8Rong H J, Ong Y S, Tan A H, et al. A fast pruned-extreme learning machine for classification problem [J]. Neurocompu ting, 2008, 72(1): 359-366.
  • 9Miche Y, Sorjamaa A. OP ELM.- optimally pruned extreme learning machine[J]. IEEE Trans. on Neural Networks ,2010,21(1) :158 - 162.
  • 10Lanckriet O R G, Cristianini N, Bartlett P, et al. Learning the kernel matrix with semidefinite programming[J]. Journal of Machine Learning Research, 2004, 5(1) : 27 - 72.

共引文献30

同被引文献55

引证文献6

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部