期刊文献+

一种Chirplet神经网络自动目标识别算法 被引量:1

A Chirplet neural network for automatic target recognition
原文传递
导出
摘要 针对飞机目标的自动识别问题,提出一种联合特征提取与分类的Chirplet神经网络方法,实现一维高分辨率距离像的识别。Chirplet神经网络将Chirplet原子变换用于多层前馈神经网络结构的输入层,替换传统的激励函数对距离像序列进行特征提取;网络的分类部分由隐层和输出层组成。在训练过程中调整神经网络权值的同时,完成对Chirplet原子时频参数的自动调整,协调优化特征参数和分类器参数,使Chirplet神经网络同时实现特征提取和目标分类。对4类飞机目标的仿真测试结果表明,相比时频变换和Gabor原子网络等方法,具有四特征参数的Chirplet神经网络方法具有较高的识别率和抗噪性能。 Aiming at automatic target recognition of aircrafts,a Chirplet neural network for joint feature extraction and target classification was proposed to realize recognition of one-dimensional high resolution range profiles.Based on the multilayer feedforward neural network structure,the Chirplet-atom transform was used to replace the conventional excitation function in the input layer for feature extraction,and the hidden layer and output layer constituted the classifier of the network.The network weights and the parameters of Chirplet-atom node were simultaneously adjusted and optimized to achieve joint feature extraction and target classification.The simulation results of the four types of aircrafts showed that the Chirplet neural network method with the four-feature-parameters had higher recognition rate and anti-noise performance than the time-frequency transformation and Gabor atoms network.
作者 李怡霏 郭尊华 LI Yifei;GUO Zunhua(School of Mechanical,Electrical&Information Engineering,Shandong University(Weihai),Weihai 264209,Shandong,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2020年第3期8-14,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61401252)。
关键词 自动目标识别 高分辨率距离像 Chirplet神经网络 automatic target recognition high resolution range profile Chirplet neural network
  • 相关文献

参考文献4

二级参考文献59

  • 1毛京红,许小剑.高分辨力雷达目标识别研究[J].系统工程与电子技术,1994,16(10):11-18. 被引量:5
  • 2吴江标,万方,郁春来.基于小波变换法的相位编码信号脉内特征提取[J].航天电子对抗,2005,21(3):38-40. 被引量:16
  • 3李合生,韩宇,蔡英武,陶荣辉.雷达信号分选关键技术研究综述[J].系统工程与电子技术,2005,27(12):2035-2040. 被引量:72
  • 4Kawalec A,Owczarek R.Radar emitter recognition using intrapulse data[C].Proceedings of 15th International Conference on Microwaves,Radar and Wireless Communications,2004,2:435-438.
  • 5Lobo A P,Loizou P C.Voiced/unvoiced speech discrimination in noise using Gabor atomic decomposition[C].In:Proc.of IEEE Int.Conf.on Acoustics,Speech,and Signal Processing,2003,820-828.
  • 6Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans.On Signal Processing,1993,41(12):3397-3415.
  • 7Qian S,Chen D.Signal representation using adaptive normalized Gaussian function[J].Signal Processing,1994,36(1):1:11.
  • 8Zhu M,Pu Y W,Jin W D,et al.A Time-frequency atom approach to radar emitter signal feature extraction[C].Proceeding of the 2006 IEEE International Conference on Communications,Circuits and Systems,2006,615-619.
  • 9Rosa M,Figueras i Ventura,Pierre V.Matching pursuit through genetic algorithms[R].Signal Processing Laboratories Technical Report 01.02,2001.
  • 10Tony H.Quantum computing:anintroduction[J].Computing &Control Engineering Journal,1999,10(3):105-112.

共引文献90

同被引文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部