期刊文献+

基于弹性梯度下降算法的BP神经网络降雨径流预报模型 被引量:10

Research on BP neural network rainfall runoff forecasting model based on elastic gradient descent algorithm
原文传递
导出
摘要 运用反向传播(back propagation,BP)的改进算法弹性梯度下降算法,选择崇阳溪上游流域1997—2014年的14场降雨径流过程,以流域内洋庄、吴边、大安、坑口、岭阳、岚谷6个雨量站的实测降雨量和武夷山水文站的前期流量资料为输入,武夷山水文站相应流量为输出,建立弹性梯度下降算法的BP神经网络降雨径流预报模型,采用7场降雨径流过程对模型进行检验。结果表明,与传统的反向传播算法相比,该模型所需的参数较少,运算速度显著提高,模型的预报精度满足要求,可以为防汛部门预测洪水提供依据。 The improved elastic gradient descent algorithm of back propagation was used,and 14 rainfall runoff processes from 1997 to 2014 in the upper reaches of Chongyang River were selected.The back propagation(BP)neural network rainfall-runoff forecasting model of the elastic gradient descent algorithm was established,which took the measured rainfall of six rainfall stations in Yangzhuang,Wubian,Da'an,Kengkou,Lingyang,and Langu in the basin and the preliminary flow data of Wuyishan Hydrological Station as inputs,and selected the corresponding flow of Wuyishan Hydrological Station as output.The 7-rainfall runoff process was used to test the model,the test results showed that the proposed method required fewer parameters and had higher operation speed than the traditional back propagation algorithm.The prediction accuracy of the model could meet the requirements,and provide the basis for flood control and disaster reduction.
作者 金保明 卢光毅 王伟 杜伦阅 JIN Baoming;LU Guangyi;WANG Wei;DU Lunyue(College of Civil Engineering,Fuzhou University,Fuzhou 350116,Fujian,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2020年第3期117-124,共8页 Journal of Shandong University(Engineering Science)
基金 福建省自然科学基金资助项目(2016J01734)。
关键词 弹性梯度下降法 BP神经网络 降雨径流 预报模型 elastic gradient descent algorithm BP neural network rainfall runoff forecasting model
  • 相关文献

参考文献6

二级参考文献49

共引文献147

同被引文献124

引证文献10

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部