摘要
针对灾害监测传感网呈现出典型的间歇性连通和区域性连通特征,导致数据传输不稳定甚至传输失败的问题,提出一种基于链路质量估计的分簇路由算法.构建基于梯度增强决策树(GBDT)的链路质量估计模型,通过接收信号强度指示(RSSI)、链路质量指示器(LQI)和信噪比(SNR)估计链路的数据包接收速率(PRR)值,根据所获得的PRR估计值对网络分簇,实现簇内数据的高效传输.在此基础上,设计综合链路质量、节点剩余能量等指标的自适应功率分簇路由算法,包括单跳算法LQE-PA和多跳算法LQE-PAMH,通过自适应功率传输的方式将低质量链路提升为高质量链路.仿真结果表明该算法在包传输成功率、网络生存周期和网络吞吐量等方面具有明显优势.
The link quality of a wireless link under a disaster monitoring scenario is strongly uncertain.This uncertainty leads to characteristics of intermittent or regional connection and may further result in unstable or failed transmission of data.A clustering routing algorithm based on link quality was proposed to resolve this problem.Firstly,a link quality estimation model based on gradient boosting decision tree(GBDT) algorithm was constructed to determine the packet reception rate(PRR) based on received signal strength indication(RSSI),LQI(link quality indicator) and signal to noise rate(SNR).Then clusters were established based on the estimated PRR to implement efficient data transmission among clusters.Afterwards two algorithms with power adaption ability,named LQE-PA for single hop and LQE-PAMH for multi-hop,were proposed.They include such indicators such as link quality and node residual energy and can transform a low quality link to a high quality one by power adaption transmission.The simulation results show that the algorithm outperforms other algorithms in terms of packet transmission success rate,network lifetime and network throughput.
作者
胡青松
罗大伟
张梅香
李世银
HU Qingsong;LUO Dawei;ZHANG Meixiang;LI Shiyin(School of Information and Control Engineering,China University of Mine and Technology,Xuzhou 221116,Jiangsu China;School of Information Engineering,Yangzhou University,Yangzhou 225127,Jiangsu China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第6期26-32,共7页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(51874299,61771474)
江苏省科技成果转化专项资金资助项目(BA2016016)。
关键词
链路质量
梯度增强决策树算法
自适应功率
灾害监测传感网
数据传输
link quality
gradient boosting decision tree(GBDT)algorithm
power adaption
disaster monitoring sensor networks
data transmission