期刊文献+

广州市登革热传播风险的预测研究

The prediction of dengue fever transmission risk in Guangzhou
下载PDF
导出
摘要 目的利用互联网数据百度指数对登革热疫情进行预测,为制定登革热防治策略提供科学依据。方法收集广州市2015-2018年登革热每周发病数及本地区相应每周的登革热关键词的百度指数,通过R语言分析百度指数与实际病例数相关性、建立多元线性回归模型,并通过交叉验证和反向测试评估模型效果。结果回归模型预测值与实际值的Pearson相关系数为0.845(P<0.05),Spearman相关系数为0.608(P<0.05),且数据模型也得到较好验证。考虑到历史新发病例数对当前的影响,改进后的预测模型为Y=0.03X1-0.04X2-0.10X3-0.07X5-0.126X7+0.16X8+0.076X10+0.012X12+0.713Xp+18.30(调整R2=0.896 6,AIC=911.49),预测值与实际值更为接近。结论多元线性回归模型可较好地预测广州市登革热疫情发病趋势。 Objective To predict the dengue fever epidemic based on Baidu Index of internet data,and provide scientific basis for the development of dengue fever prevention strategies.Methods Weekly incidence of dengue fever in Guangzhou from 2015 to 2018 and the local corresponding weekly Baidu Index of the keywords of dengue fever were collected.The correlation between Baidu Index and the actual number of cases was analyzed by R language to establish a multiple linear regression model.Then the model was evaluated by cross-validation and reverse test.Results The Pearson correlation coefficient between predictive values and actual values was 0.845(P<0.05)and Spearman correlation coefficient was 0.608(P<0.05).The regression model was also well validated.Considering the impact of the number of past dengue fever cases on the current dengue fever cases,the improved prediction model was Y=0.03X1-0.04X2-0.10X3-0.07X5-0.126X7+0.16X8+0.076X10+0.012X12+0.713Xp+18.30(adjusted R2=0.8966,AIC=911.49),and the predicted value was closer to the actual value.Conclusion The multivariable linear regression model can predict the dengue fever epidemic in Guangzhou.
作者 方钦 康会丽 李彤 郭钜旋 谭锦花 FANG Qin;KANG Hui-li;LI Tong;GUO Ju-xuan;TAN Jin-hua(Guangzhou Haizhu District Center for Disease Control and Prevention,GuangZhou 510288,China;Department of Medical Statistics and Epidemiology,School of Public Health of Sun Yat-sen University,Guangzhou 510080,China)
出处 《中华卫生杀虫药械》 CAS 2020年第3期265-269,共5页 Chinese Journal of Hygienic Insecticides and Equipments
基金 2017年度海珠区区属基层医疗卫生专项项目(编号:海科工商计2018-33)。
关键词 登革热 百度指数 回归模型 预测 dengue fever Baidu index regression model prediction
  • 相关文献

参考文献10

二级参考文献65

  • 1吴家兵,叶临湘,尤尔科.时间序列模型在传染病发病率预测中的应用[J].中国卫生统计,2006,23(3):276-276. 被引量:51
  • 2赵盈.我国GDP时间序列模型的建立与实证分析[J].西安财经学院学报,2006,19(3):11-14. 被引量:28
  • 3刘常昱,胡晓峰,司光亚,罗批.基于小世界网络的舆论传播模型研究[J].系统仿真学报,2006,18(12):3608-3610. 被引量:80
  • 4.中国互联网络发展状况统计报告[EB/OL].http:∥www.cnnic.org.,2002-07.
  • 5李燕婷,张宏伟,任宏,陈健,王晔.上海市流感样病例发病趋势的时间序列分析和预测模型研究[J].中华预防医学杂志,2007,41(6):496-498. 被引量:33
  • 6中华人民共和国国家卫生和计划生育委员会.流感样病例暴发疫情处置指南(2012年版)[EB/OL].[2012-11-05].http://www.nhfpc.gov.cn/jkj/s3577/201211/ef27b0759a014ad9951cf9dccafd9958.shtml.
  • 7World Health Organization seasonal influenza[EB/OL].http://www.who.int/mediacentre/factsheets/fs211/en/.
  • 8Freifeld C C,Mandl K D,Reis B Y,et al.HealthMap:global infectious disease monitoring through automated classification and visualization of Internet media reports[J].Journal of the American Medical Informatics Association,2008,15(2):150-157.
  • 9Polgreen P M,Chen Y,Pennock D M,et al.Using Internet searches for influenza surveillance[J].Clinical Infectious Diseases,2008,47(11):1443-1448.
  • 10Ginsberg J,Mohebbi M H,Patel R S,et al.Detecting influenza epidemics using search engine query data[J].Nature,2008,457(7232):1012-1014.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部