期刊文献+

基于大模型混合算法的站台门设备状态预测方法研究 被引量:1

Study on Prediction Method of Platform Door Equipment State Based on Large Model Hybrid Algorithm
下载PDF
导出
摘要 地铁站台门设备关键状态量的监测为设备状态预警提供了重要依据。根据免疫算法及小波神经网络的基本原理,对设备状态预测进行优化,提出大模型混合算法的站台门设备状态预测算法。结合国内外城市轨道交通机电类设备健康运营现状,对基于大模型混合算法(免疫算法+小波神经网络)的站台门设备健康管理系统进行验证,结果表明此算法预测设备状态误差小、理论值准确。 The monitoring of the key status of metro station door equipment provides an important basis for early warning of equipment status.The basic principles of artificial immune algorithm and wavelet neural network are introduced,the equipment state prediction is optimized,and a large model hybrid algorithm for platform door equipment state prediction algorithm is proposed.Combined with the domestic and foreign urban rail transit electromechanical equipment health operation status,the platform door equipment health management system based on the large model hybrid algorithm(immune algorithm+wavelet neural network)was verified.The results show that the algorithm predicts the equipment state error is small and the theoretical value is accurate.
作者 杨辉 曲泽超 张振 朱振亚 YANG Hui;QU Zechao;ZHANG Zhen;ZHU Zhenya(Zhengzhou Metro Group Co.,Ltd,Zhengzhou 450000,China)
出处 《郑州铁路职业技术学院学报》 2020年第2期15-20,共6页 Journal of Zhengzhou Railway Vocational and Technical College
关键词 设备状态预测 大模型混合算法 免疫算法 小波神经网络 equipment status prediction large model hybrid algorithm immune algorithm wavelet neural network
  • 相关文献

参考文献3

二级参考文献10

共引文献87

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部