期刊文献+

基于GIOWA算子的我国碳排放量的组合预测研究 被引量:2

Combined Forecast Research on Carbon Emission in China Based on GIOWA Operator
下载PDF
导出
摘要 基于1989—2018年中国碳排放量数据,采用多元线性回归、Hlot-Winters非季节指数平滑、ARIMA模型3种单项预测模型对我国碳排放量进行预测,鉴于单项预测模型的局限性,基于误差平方和最小的最优性准则,建立广义诱导有序加权平均(GIOWA)的组合预测模型,并对模型的有效性进行评价。结果表明:组合预测模型优于单项预测模型,验证了组合预测模型的有效性;未来5年,我国碳排放量处于上升趋势,而碳排放强度呈下降趋势。 Based on China's carbon emissions data from 1989 to 2018,with multiple linear regression model,Hlot-Winters non-seasonal exponential smoothing,and ARIMA model,we predict China's carbon emissions.In view of the limitation of the single-term prediction model,the paper establishes a generalized induced ordered weighted average(GIOWA)combination prediction model based on the optimality criterion of the minimum squared error and the minimum criterion.And then,we evaluates its effectiveness.The results show that:(1)the combined forecasting model is superior to the single forecasting model,which verifies the effectiveness of the combined forecasting model;(2)In the next five years,China's carbon emissions are on an upward trend,but the intensity of carbon emissions is on a downward trend.
作者 陆玉玲 Lu Yuling(School of Statistics and Applied Mathematics,Anhui University of Finance and Economics,Bengbu,Anhui 233030,China)
出处 《黑龙江工业学院学报(综合版)》 2020年第4期108-114,共7页 Journal of Heilongjiang University of Technology(Comprehensive Edition)
基金 安徽省教育厅人文社科重点项目“环境政策工具选择的效果及宏观经济波动:实证识别与政策设计”(编号:SK2018A0439) 安徽财经大学研究生科研创新基金项目“中国经济增长和环境规制对雾霾污染的影响-基于地级市面板数据的实证研究”(编号:ACYC2018198)。
关键词 碳排放 组合预测 GIOWA算子 Hlot-Winters指数平滑 多元线性回归 carbon emissions combined forecasting GIOWA operator Hlot-Winters exponential smoothing multiple linear regression
  • 相关文献

参考文献7

二级参考文献65

  • 1陈华友,刘春林,盛昭瀚.IOWHA算子及其在组合预测中的应用[J].中国管理科学,2004,12(5):35-40. 被引量:71
  • 2冯宏琳,张玮,廖鹏.基于灰色系统理论的船闸货运量预测研究[J].武汉理工大学学报(交通科学与工程版),2006,30(1):117-119. 被引量:20
  • 3Martin J. Atkins , Andrew S. Morrison, Michael R W. Walmsley. Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector [ J ]. Applied Energy, 2010 ( 87 ) : 982 - 987.
  • 4Hsiao - Tien Pao, Chung - Ming Tsai. Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil[ J]. En- ergy, 2011 ( 36 ) :2450 - 2458.
  • 5Nigel N. Clark, et al. Expressing cycles and their emissions on the basis of properties and results from other cycles [ J ], Environmental Science & Technology, 2010 (44) :5986 - 5992.
  • 6Jacob N. Hacker et al. Embodied and operational carbon dioxide emissions from housing: A case study on the effects of thermal mass and climate change [ J ]. Energy and Buildings, 2008 (40) :375 - 384.
  • 7Peter J. Marcotullio, et al. Potential futures for road transportation CO2 emissions in the Asia Pacific [ J ]. Asia Pacific Viewpoint, 2007,48 (3) : 355 - 377.
  • 8! Chih - Ming Chen, Hang - Ming Lee. An Efficient Gradient forecasting search method utilizing the Discrete Difference Equation Prediction Mod- el [ J ]. Applied Intelligence, 2002 ( 16 ) :43 - 58.
  • 9范秋芳.基于BP神经网络的中国石油安全预警研究[J].运筹与管理,2007,16(5):100-105. 被引量:23
  • 10BRIAN O' Neil, DATON M.Global Demographic Trends and Future Carbon Emissions [ J ]. PNAS, 2010, 107 ( 41 ) : 17521-17526.

共引文献138

同被引文献18

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部