期刊文献+

Xtion/IMU组合的机器人室内定位方法 被引量:2

Robot indoor positioning method based on Xtion/IMU combination
原文传递
导出
摘要 针对机器人在室内、深海或者高楼林立的大都市导航定位存在的问题,该文展开了基于Xtion传感器与惯性测量单元(IMU)松组合的移动机器人室内定位算法的研究,采用了组合导航及自适应渐消扩展卡尔曼滤波算法等创新性方法,解决了机器人室内定位精度不高的问题。通过对机器人室内组合导航轨迹的实验验证,该文的组合导航方法能够提高机器人移动轨迹的精度,更接近于真实轨迹,满足了移动机器人室内导航定位的需求。 Aiming at the problem of navigation positioning in metropolitan indoors,deep seas or highrise buildings,this paper studied the mobile robot indoor positioning method based on the loose combination of Xtion sensor and inertial measurement unit(IMU).The research of localization algorithm adopts innovative methods such as integrated navigation and adaptive fading extended Kalman filter algorithm to solve the problem that the positioning accuracy of the robot is not high.Through the experimental verification of the combined navigation trajectory of the robot•the integrated navigation method of this paper could improve the accuracy of the robot’s moving trajectory and is closer to the real trajectory,which meets the needs of mobile robot indoor navigation and positioning.
作者 高明镜 郭杭 GAO Mingjing;GUO Haag(Information Engineering School of Nanchang University,Nanchang 330031,China)
出处 《测绘科学》 CSCD 北大核心 2020年第6期62-66,79,共6页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41764002) 国家重点研发计划项目(2016YFB0502002)。
关键词 机器人 传感器 室内定位 松组合 robot sensor indoor positioning loose combination
  • 相关文献

参考文献3

二级参考文献20

  • 1张尧,陈卫东.一个基于全景视觉的移动机器人导航系统的设计与实现[J].机器人,2005,27(2):173-177. 被引量:6
  • 2Kleeman L.Optimal estimation of position and heading for mobile robots using ultrasonic beacons and dead-reckoning[C]∥Proceedings of the 1992 IEEE International Conference on Robotics and Automation.Nice,France:IEEE,1992:2582-2587.
  • 3Leonard J F,Durrant-Whyte H F.Mobile robot localization by tracking geometric beacons[J].IEEE Transactions on Robotics and Automation,1991,7(3):376-382.
  • 4Bar-Shalom Y,Fortmann T E.Tracking and data association[M].San Diego,CA:Academic Press Limited,1988:101-120.
  • 5Grewal M S,Andrews A P.Kalman filtering:theory and practice using MATLAB,second edition[M].New York,USA:Wiley Interscience Publication,2001:44-79.
  • 6Welch G,Bishop G.An introduction to the kalman filter.Technical Report.TR 95-041[R].USA:Department of Computer Science,University of North Carolina at Chapel Hill,1995.
  • 7Shademan A,Farrokh J S.Sensitivity analysis of EKF and iterated EKF pose estimation for position-based visual servoing[C]∥Proceedings of IEEE Conference on Control Applications (CCA 2005),Toronto,Ontario,CA:IEEE,2005:28-31.
  • 8Borenstein J,Everett H R,Feng L.Navigating mobile robots:sensors and techniques[M].Wellesley,Mass:A.K.Peters,Ltd.1996.
  • 9Cohen O,Edan Y.Adaptive fuzzy logic algorithm for grid-map based sensor fusion[A].Proceedings of the IEEE Intelligent Vehicles Symposium[C].Piseataway,NJ,USA:IEEE,2004.625 -630.
  • 10Tomatis N,Nourbakhsh I,Siegwart R.Simultaneous localization and map building:A global topological model with local metric maps[A].Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems[C].Piscataway,NJ,USA:IEEE,2001:421 -426.

共引文献160

同被引文献32

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部