期刊文献+

基于先验图像约束压缩感知多能CT重建算法

Prior Image Constrained Compressed Sensing CT Reconstruction Based on Multi-Energy
下载PDF
导出
摘要 由不同材质构成且材质之间密度相差较大的工件进行单一能量CT重建时无法获取完整内部结构.为获得结构信息完整的高质量CT重建图像,研究了基于先验图像压缩感知多能重建方法.首先从低到高依次采集多个能量下的投影数据,并用凸集投影-全变分最小化(POCS-TVM)算法对最低能量的投影数据进行CT重建,然后,将重建好的图像作为先验信息,利用先验图像压缩感知算法(PICCS)对下一组能量下的投影进行重建,重建后的图像再次作为新的先验信息重复以上步骤,依此类推直到最高能量的数据重建,以此达到完整重建.结果表明该方法可以有效减少因投影缺失而导致的伪影并保护低密度边缘. When the workpiece was irradiated by a single energy,it is difficult to obtain the complete CT image of workpieces which were composed of different materials with large density difference.In order to accurately reconstruct CT images of workpieces and obtain a high-quality CT image,the prior image constrained compressed sensing CT reconstruction based on multi-energy has been studied.Firstly,projection data were collected from low energy to high energy in turn and POCS-TVM algorithm was utilized to reconstruct the image at the lowest energy.Then,the reconstructed image at the lowest energy was regarded as prior information and utilizing the prior image constrained compressed sensing algorithm reconstructs next energy CT image.The reconstructed image was used as the prior information again.Repeat the above steps until the highest energy.The simulation results show that the method can effectively reduce the artifacts due to under-sampling projection.And the low density edges are well protected.
作者 赵金龙 刘祎 桂志国 杨一鸣 ZHAO Jin-long;LIU Yi;GUI Zhi-guo;YANG Yi-ming(Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan 030051, China;School of Information and Communication Engineering, North University of China, Taiyuan 030051, China)
出处 《中北大学学报(自然科学版)》 CAS 2020年第4期331-336,358,共7页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(61801438) 中北大学青年学术带头人资助项目(QX201801)。
关键词 先验图像压缩感知 有效投影 先验图像 多能CT POCS-TVM算法 prior image constrained compressed sensing effective projection prior image multi-energy CT POCS-TVM algorithm
  • 相关文献

参考文献5

二级参考文献26

  • 1Hamideen M S, Sharaf J, A1-Saleh K A, et al. Radiation Physics and Chemistry, 2011, 80 : 1162.
  • 2Francis Zarb, Louise Rainford, Mark F McEntee. Radiography, 2010, 16.. 147.
  • 3Lee Ting-Yim, Chhem Rethy K. European Journal of Radiology, 2010, 76: 28.
  • 4Anthony P H Butler, Jochen Butzer, Nanette Schleich, et al. Nuclear Instruments and Methods in Physcis Research A, 2011, 633.. 140.
  • 5George X Ding, Peter Munro, Jason Pawlowski, et al. Radiotherapy and Oncology, 2010, 97: 585.
  • 6Minami Y, Inmmura R, Minami Y, et al. Journal of Nuclear Science and Technology, 2011, 48.. 108.
  • 7Ferreira C C, Vieira J W, Maia A F. Nuclear Instruments and Methods in Physcis Research A, 2009, 267: 3447.
  • 8Hamideen M S, Sharaf J, AI-Saleh K A, et al. Radiation Physics and Chemistry, 2011, 80: 1162.
  • 9Francis Zarb, Louise Rainford, Mark F McEntee. Radiography, 2010, 16: 147.
  • 10Lee T Y, Chhem R K. European Journal of Radiology, 2010, 76: 28.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部