摘要
本文采用等效夹杂法研究含单个椭圆的夹杂平面在均匀温度变化下的热弹性问题.首先,利用二维椭圆夹杂的Eshelby内部张量和外部张量推导无限大平面下含单个椭圆夹杂的热应力计算公式,并编制成计算机程序;然后,通过典型数值算例证明本文方法的有效性,并与有限元结果进行比较.结果表明,本文方法具有高效率和高精度等优点.最后,使用本文方法分析了夹杂和基体的剪切模量以及椭圆夹杂的长短轴比对热弹性场的影响.
In this paper,the thermoelastic problem of a single elliptical inclusion of infinite matrix under uniform temperature changes was studied using the equivalent inclusion method.Firstly,using the Eshelby internal tensor and external tensor of two-dimensional elliptical inclusions,the thermal stress calculation formula with a single elliptical inclusion in the infinite matrix was derived and programmed.The typical calculation case demonstrates the effectiveness of the method and a comparison with the FEM calculation results was made.The results show that the proposed method has the advantages of being more efficient and more precise.Finally,the effects of the shear modulus of inclusions and matrix and the long and short axis ratio of the elliptical inclusion to the thermoelastic field were studied by adopting the proposed method.
作者
黄云海
张炯
刘卫东
HUANG Yun-hai;ZHANG Jiong;LIU Wei-dong(School of Civil Engineering and Architecture,Wuyi University,Jiangmen 529020,China;School of Mechanical Engineering,Hohai University,Nanjing 210098,China)
出处
《五邑大学学报(自然科学版)》
CAS
2020年第2期72-78,共7页
Journal of Wuyi University(Natural Science Edition)
基金
广东省自然科学基金资助项目(2018A030313430)
广东省教育厅青年创新人才项目(2017KQNCX201)
大学生创新创业训练计划项目(XJDC2017013,201711349032,201811349108,201811349107)。
关键词
椭圆夹杂
热应力
外部张量
elliptical inclusion
thermal stress
external tensor