期刊文献+

基于在线社交网络的JPS跳跃并行顶点采样方法

JPS Jump Parallel Vertex Sampling Method Based on Online Social Network
下载PDF
导出
摘要 针对现有在线社交网络(OSNs)采样方法无法有效地应用于低连通性的社交网络,且采集的样本顶点平均度严重偏离原始社交网络、顶点过度采样等问题,本文基于蒙特卡罗随机游走(MHRW)采样方法,引入双重跳跃策略、并行机制和顶点缓存区,提出一种跳跃无偏并行顶点(JPS)采样方法。将在线社交网络数据集建模为包含顶点和边的社交图进行模拟采样,利用Python/Matplotlib绘图库绘制采集的样本顶点属性图。实验结果表明,该采样方法更有效地应用于不同连通强度的社交图,提高了采样过程中的顶点更新率,降低了样本顶点的平均度偏差且能够更快速地收敛。 In view of problems that the existing online social networks(OSNs)sampling methods cannot be effectively applied to low connectivity social networks,and the average degree of sample vertices seriously deviates from the original social network,vertex over sampling,based on the Metropolis-Hasting Random Walk(MHRW)sampling method,a Jump unbiased Parallel vertex Sampling(JPS)method is proposed by introducing double jump strategy,parallel mechanism and vertex buffer.The online social network data set is modeled as a social graph with vertices and edges for simulation sampling,and the sample vertex attribute graph is drawn by using Python/Matplotlib drawing library.The experimental results show that the sampling method is more effective for social graph with different connectivity,which improves the update rate of vertices in the sampling process,reduces the average deviation of sample vertices and can converge more quickly.
作者 赵倩文 ZHAO Qian-wen(School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
出处 《计算机与现代化》 2020年第7期55-60,共6页 Computer and Modernization
关键词 在线社交网络 顶点采样 蒙特卡罗随机游走(MHRW) 双重跳跃 无偏 并行机制 online social network vertex sampling Metropolis-Hasting Random Walk(MHRW) double jump unbiased parallel mechanism
  • 相关文献

参考文献4

二级参考文献27

  • 1周兰凤,洪炳熔.用基于知识的遗传算法实现移动机器人路径规划[J].电子学报,2006,34(5):911-914. 被引量:27
  • 2方锦清,汪小帆,郑志刚,毕桥,狄增如,李翔.一门崭新的交叉科学:网络科学(上)[J].物理学进展,2007,27(3):239-343. 被引量:130
  • 3吕琳媛,周涛.链路预测[M].北京:高等教育出版社,2013.
  • 4BOCCALETTI S,.LATORA V,MORENO Y,et al.Complex network:structure and dynamics[J/OL].Physics Reports,2006,424:175-30.[2016-03-201.http://www.sciencedirect.com/science/article/pii/S037015730500462X.
  • 5BARABaSI A L,ALBERT R.Emergence of scaling in random networks[J/OL].Science,1999,286(5439):509-12.[2016-03-201.http://science.sciencemag.org/content/286/5439/509.
  • 6WATTS D J,STROGATZ S H.Collective dynamics of smallworld networks[J/OL].Nature,1998,393(6684):440-442.[2016-03-201.http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=9&SID=N2CCOYPK3reQ14t9giD&page=1&doc=3.
  • 7Jiang Jing,WILSON C,Wang Xiao,et al.Understanding latent interactions in online social networks[J/OL].ACM Transactions on the Web,2010,7(4):369-382.[2016-03-201.http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=6&SID=N2CCOYPK3reQI4t9giD&page=1&doc=1.
  • 8MORENO Y,NEKOVEE H,PACHECO A F.Dynamics of rumor spreading in complex networks[J/OL].Physical Review E,2004,69(6 Pt 2):066130.[2016-03-201.http://journals,aps.org/pre/abstract/10.1103/PhysRevE.69.066130.
  • 9汪小帆.网络科学发展研究[J].学科发展报告,2013,36(4):111-119.
  • 10LESKOVEC J,FALOUTSOS C.Sampling from large graphs[C].The Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2006;20-23.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部