期刊文献+

基于OpenCV对汽油燃烧特征的识别描述 被引量:1

OpenCV-based Recognition and Description of Gasoline Combustion Characteristics
下载PDF
导出
摘要 汽油具有极易引燃的特性,导致汽油火灾时有发生,且易成为人为放火的助燃剂。因此,对汽油燃烧的特征进行描述具有重要意义。基于OpenCV环境,从汽油燃烧产生的火焰和烟雾两个方面入手,选择具有代表性的视觉图像特征,从计算机视觉的角度对颜色、形状、面积等进行定量描述,并提取出纹理、角点、闪烁等多种基于计算机处理计算的特征,实现了通过多特征对室内无风环境下汽油燃烧视觉特点的描述,有助于对火灾视频资料的分析,可用于判定起火物、研究起火原因。 Gasoline is characterized as being ignited easily,which often leads to gasoline fire,and is often used as a combustion supporting agent in arson cases.Therefore,it is of great significance to describe the characteristics of gasoline combustion.The experiment is set in an OpenCV environment with focus paid to the flame and smoke produced by gasoline combustion.A quantitatively description is made from the perspective of computer vision on the color,shape,area and other image features.At the same time,the texture,corner,flicker and other features are extracted based on computer processing and calculation to describe the visual characteristics of gasoline combustion under the indoor wind-free environment,which is helpful for the analysis of the fire video,and can be used to determine the initial fuels,and study the cause of the fire.
作者 陈彦锟 马碧筱 赵吴子凡 CHEN Yankun;MA Bixiao;ZHAO-WU Zifan(Graduate School,China People’s Police University,Langfang,Hebei Province 065000,China)
出处 《武警学院学报》 2020年第4期38-45,共8页 Journal of the Armed Police Academy
关键词 汽油燃烧 OPENCV 图像分析 特征提取 gasoline combustion OpenCV image analysis feature extraction
  • 相关文献

参考文献3

二级参考文献38

  • 1LIJin,FONG,N.K.,CHOW,W.K.,WONG,L.T.,LUPuyi,XUDian-guo.The motion analysis of fire video images based on moment features and flicker frequency[J].Journal of Marine Science and Application,2004,3(1):81-86. 被引量:9
  • 2陈莹,吴爱国.基于图像处理的火灾监测系统软件设计[J].低压电器,2006(1):32-35. 被引量:9
  • 3陈晓娟,卜乐平,李其修.基于图像处理的明火火灾探测研究[J].海军工程大学学报,2007,19(3):6-11. 被引量:15
  • 4周军盈,杜啸晓.图像识别技术在火灾探测中的应用[J].消防科学与技术,2007,26(4):417-420. 被引量:14
  • 5Celik T, Demirel H, Ozkaramanli H, et al. Fire detection in video sequences using statistical color model[J]. Journal of Visual Communication and Im- age Representation, 2007, 18(2): 176-185.
  • 6Chen Thou ho, Yin Yen hui, Huang Shi-feng. The smoke detection for early fire-alarming system based on video processing[C]//IEEE 2006 International Conference on Intelligent Information Hiding and Multimedia Signal Processing ( IIHMSP ' 2006 ). Washington, DC, USA : IEEE Computer Society Press, 2006: 427-430.
  • 7Cho Bo ho, Bae Jong-wook, Jung Sung-hwan. Image processing-based fire detection system using statistic color model[C] // International Conference on Advanced Language Processing and Web Information Technology. Washington, DC, USA : IEEE Computer Society Press, 2008 : 245-250.
  • 8Turgay Celik, Hasan Demirel. Fire detection in video sequences using a generic color model[J].Fire Safety Journal, 2009, 44: 147-158.
  • 9Liu Che-bin, Narendra Ahuja. Vision based fire detection[C]///Proceedings of the 17th International Conference on Pattern Recognition ( ICPR ' 04 ). Washington, DC, USA : IEEE Computer Society Press, 2004 : 134-137.
  • 10Toreyin Ugur, Yigithan Dedeoglu, et al. Computer vision based method for real-time fire and flame detection[J]. Pattern Recognition Letter, 2006, 27 (1) :49-58.

共引文献44

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部